рак поджелудочной железы

Содержание

Перейти к основному содержанию

флаг СШАОфициальный сайт правительства США

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839014/

 

 Февраль 2022 г.; 14(3): 619.
Опубликовано онлайн 30 января 2022 г. doi:  10.3390/nu14030619
PMCID: PMC8839014
PMID: 35276978
Содержание
  1. Травы и растения в лечении рака поджелудочной железы: систематический обзор экспериментальных и клинических исследований
  2. Связанные данные
  3. Абстрактный
  4. 1. Предыстория
  5. 2. Методы
  6. 3. Результаты
  7. 3.1 Клинические исследования использования растений в лечении рака поджелудочной железы
  8. 3.1.1.PHY906
  9. 3.1.2 Экстракт омелы белой
  10. 3.1.3 Омела белая
  11. 3.2 Влияние растительных производных на стволовые клетки ПК
  12. 3.2.1. Сок горькой дыни
  13. 3.2.2. Кроцетиновая кислота ( Gardenia jasminoides )
  14. 3.2.3. Гиспидин ( Phellinus linteus )
  15. 3.2.4 Кверцетин и ресвератрол
  16. 3.2.5 Пао Перейра
  17. 3.3 Нанотехнологии для ПК
  18. 3.3.1. Наночастицы PLGA, инкапсулированные в антотекол (Khaya Anthotheca—Meliaceae)
  19. 3.3.2. Эйзенхардтия плоскоплодная
  20. 3.3.3. Золотые наночастицы Panax notoginseng
  21. 3.3.4. Умные наночастицы, загруженные Parvifloron-D
  22. 3.3.5 Силибинин
  23. 3.3.6 Наночастицы оксида цинка с использованием экстракта листьев Anacardium occidentale
  24. 3.3.7. Наночастицы золота Scutellaria barbata
  25. 3.4. Комбинированное применение растений с химиотерапевтическими средствами у больных раком предстательной железы
  26. Таблица 1
  27. 3.4.1 Спаржа
  28. 3.4.2 Экстракты аронии ( Aronia melanocarpa )
  29. 3.4.3 Эмульсия семян коикса
  30. 3.4.4. C5E
  31. 3.4.5. Emodin
  32. 3.4.6. Escin
  33. 3.4.7. Fisetin
  34. 3.4.8. Gloriosa superba L. (Glory Lily, Colchicaceae)
  35. 3.4.9. Herbal Mixture Extract
  36. 3.4.10. Isodon Eriocalyx and Its Bioactive Component Eriocalyxin-b
  37. 3.4.11. Monogalactosyl Diacylglycerol
  38. 3.4.12. Moringa oleifera
  39. 3.4.13. Nexrutine®
  40. 3.4.14. Ocoxin Oral Solution
  41. 3.4.15. Oplopanax horridus
  42. 3.4.16. Paeonia suffruticosa
  43. 3.4.17. Pao Pereira
  44. 3.4.18. Piperlongumine
  45. 3.4.19. Resveratrol
  46. 3.4.20. Rauwolfia vomitoria
  47. 3.4.21. Thymoquinone
  48. 3.4.22. Triptolide
  49. 3.5. Experimental Studies Using Plants as Unique Agents against Pancreatic Cancer Cell Lines and Xenografts
  50. Table 2
  51. 3.5.1. Achyranthes Aspera
  52. 3.5.2. Alpinia officinarum
  53. 3.5.3. Amoora rohituka
  54. 3.5.4. (Ancistrocladaceae) liana
  55. 3.5.5. Apigenin
  56. 3.5.6. Asteraceae and Lamiaceae
  57. 3.5.7. Bitter Melon Juice
  58. 3.5.8. BRM270
  59. 3.5.9. Boesenbergia pandurata
  60. 3.5.10. Boswellia sacra Gum Resins
  61. 3.5.11. Bruceine D
  62. 3.5.12. Cannabinoids
  63. 3.5.13. Citrus Unshiu Peel
  64. 3.5.14. Cloves (Syzygium aromaticum)
  65. 3.5.15. Cocoa Polyphenol
  66. 3.5.16. Cordyceps Militaris
  67. 3.5.17. Crocus Sativus
  68. 3.5.18. Cryptotanshinone
  69. 3.5.19. Cucurbitacin E
  70. 3.5.20. Cucurmosin
  71. 3.5.21. Dandelion root Extract
  72. 3.5.22. Degalactotigonin
  73. 3.5.23. Diterpene 25 Signaling
  74. 3.5.24. Elemene
  75. 3.5.25. Ellagic acid
  76. 3.5.26. Emodin
  77. 3.5.27. Eryngium billardieri
  78. 3.5.28. Eucalyptus
  79. 3.5.29. Ferula Hezarlalehzarica
  80. 3.5.30. Gallic acid
  81. 3.5.31. Garlic
  82. 3.5.32. Gedunin (Azadirachta indica)
  83. 3.5.33. Ginger Extract
  84. 3.5.34. Ginkgolic Acid
  85. 3.5.35. Grape Proanthocyanidin
  86. 3.5.36. Graviola
  87. 3.5.37. Green Tea Extract
  88. 3.5.38. Helicteres hirsuta Lour
  89. 3.5.39. Inula helenium
  90. 3.5.40. Lonicera japonica
  91. 3.5.41. Lupeol
  92. 3.5.42. Mangifera indica
  93. 3.5.43. Mexican Lime (Citrus aurantifolia)
  94. 3.5.44. Moringa Oleifera
  95. 3.5.45. Matrine
  96. 3.5.46. Naringenin and Hesperetin Combined Treatment
  97. 3.5.47. Nerium oleander
  98. 3.5.48. Nimbolide
  99. 3.5.49. Obacunone
  100. 3.5.50. Ocimum sanctum
  101. 3.5.51. Oleuropein
  102. 3.5.52. Olive Biophenols (Oleuropein, Hydroxytyrosol, and Tyrosol)
  103. 3.5.53. Oridonin
  104. 3.5.54. Paeonia lactiflora
  105. 3.5.55. Palm Oil Phenolics and PALM JUICE
  106. 3.5.56. Paramignya trimera Root and Phyllanthus amarus
  107. 3.5.57. Plumbagin
  108. 3.5.58. Pomegranate extract
  109. 3.5.59. Pulsatilla koreana
  110. 3.5.60. Quercetin
  111. 3.5.61. Radix Scutellariae
  112. 3.5.62. Rhazya stricta
  113. 3.5.63. Salvia chinensis
  114. 3.5.64. Sedum sarmentosum Bunge
  115. 3.5.65. Sugiol
  116. 3.5.66. TEOA (2a,3a,24-thrihydroxyurs-12-en-28-oicacid)
  117. 3.5.67. Toosendanin
  118. 3.5.68. Tripterygium wilfordii
  119. 3.5.69. Valtrate
  120. 3.5.70. Xanthohumol
  121. 3.5.71. Xao tam phan (Paramignya trimera)
  122. 3.5.72. Xylaria psidii
  123. 3.5.73. Wikstroemia indica
  124. 3.5.74. Ziziphus Nummularia
  125. 4. Discussion
  126. 5. Strengths and Limitations
  127. 6. Conclusions
  128. Abbreviations
  129. Author Contributions
  130. Funding
  131. Institutional Review Board Statement
  132. Informed Consent Statement
  133. Data Availability Statement
  134. Conflicts of Interest
  135. Footnotes
  136. References

Травы и растения в лечении рака поджелудочной железы: систематический обзор экспериментальных и клинических исследований

Эдгар Дельвин, академический редактор

Абстрактный

Предыстория: Рак поджелудочной железы представляет собой самую летальную злокачественную опухоль среди всех видов рака пищеварительной системы. Несмотря на терапевтические достижения, достигнутые в последние годы, прогноз этого новообразования остается неутешительным. В последнее время появилось огромное количество экспериментальных (в основном) и клинических исследований, касающихся эффективности различных растений, применяемых как по отдельности, так и в сочетании с химиотерапевтическими средствами. Помимо стран Азии, использование этих растений и трав для лечения рака пищеварительной системы также увеличивается в ряде западных стран. Целью данного исследования является обзор доступной литературы относительно эффективности растений и трав при раке поджелудочной железы. Методы: Авторы рассмотрели все экспериментальные и клинические исследования, опубликованные в Medline и Embase по состоянию на июнь 2021 года. Результаты: Было тщательно изучено более 100 растений и трав. Были отмечены благоприятные эффекты в отношении ингибирования линий раковых клеток в экспериментальных исследованиях и благоприятный клинический результат после объединения различных растений с известными химиотерапевтическими средствами. Эти травы и растения проявили свою активность против рака поджелудочной железы посредством ряда механизмов. Количество и тяжесть побочных эффектов, как правило, легкой степени. Заключение: Достаточно большое количество клинических и экспериментальных исследований подтвердило благотворное влияние многих растений и трав при раке поджелудочной железы. Необходимо провести больше крупных двойных слепых клинических исследований, оценивающих эти натуральные продукты, как по отдельности, так и в сочетании с химиотерапевтическими средствами.

Ключевые слова: альтернативное лечение, альтернативная медицина, китайская медицина, травы, рак поджелудочной железы, лекарственные растения

1. Предыстория

Рак поджелудочной железы (РПЖ) является седьмой по частоте причиной смертности от рака во всем мире, при этом средний показатель пятилетней выживаемости составляет всего 9%. По оценкам GLOBOCAN 2018, РПЖ стал причиной 432 242 новых случаев смерти из 458 918 новых случаев, зарегистрированных в этом году [  ]. В Европейском союзе РПЖ занимает 4-е место по смертности от рака [  ]. Подсчитано, что к 2040 году общее число случаев в Европейском союзе увеличится как минимум на 30%. Даже в Азии показатель пятилетней выживаемости при РПЖ почти такой же, как у западного населения: всего 7,2% [  ]. Точная этиология этого рака остается неизвестной, хотя было предложено множество факторов [  ]. Также были описаны и предложены генетические мутации, такие как онкоген Kras , инактивация генов-супрессоров опухолей, укорочение теломер, потеря хромосом и амплификация генов. Метаанализ выявил положительные ассоциации между риском PC и продуктами животного происхождения, а также богатыми крахмалом и западными диетическими моделями. С другой стороны, были замечены обратные ассоциации между риском PC и фруктами, овощами, витаминами (особенно витаминами D и B 12 [  ]) и потреблением клетчатки [  ]. Здоровые модели употребления алкоголя могут снизить риск PC, тогда как чрезмерное употребление алкоголя может фактически увеличить риск [  ]. Несмотря на то, что лечение PC было значительно улучшено, только 10% PC являются резектабельными на момент постановки диагноза [  ].

Самым важным аспектом, касающимся лечения PC, является слабый ответ на имеющуюся в настоящее время химиотерапию. Однако многие растения и травы использовались в течение столетий для лечения PC. На основе накопленных клинических и экспериментальных данных, кажется, что традиционная китайская медицина, а также многие растения, произрастающие в других частях света, должны привлечь больше внимания научного сообщества относительно их точной роли в лечении этих пациентов. В течение последнего десятилетия был отмечен настоящий взрыв в количестве и качестве экспериментальных и, в меньшей степени, клинических исследований, изучающих роль растений и трав при PC [  ].

Целью данного исследования было собрать и описать существующие экспериментальные и клинические данные, касающиеся терапевтической эффективности растений и трав в отношении PC человека. Мы скромно ожидаем, что содержание данного обзора может помочь читателю идентифицировать те растения и травы, которые имеют научно доказанное противоопухолевое действие, и легко отделить эффективные от неэффективных методов лечения с использованием растений. Другой целью данного обзора было заставить медицинских работников, фармацевтические компании и органы здравоохранения осознать необходимость проведения клинических испытаний с использованием растений, как по отдельности, так и в сочетании с традиционной химиотерапией. Мы предлагаем, чтобы медицинские школы включали по крайней мере некоторые элементарные данные в свои обычные образовательные программы относительно роли трав и растений при различных клинических расстройствах, включая злокачественные новообразования.

2. Методы

Исследование проводилось в соответствии с рекомендациями PRISMA. Мы провели поиск в различных международных базах данных, включая PubMed, Web of Science и Google Scholar, используя ключевые слова «растение», «травы», «терапия», «фитотерапия» и «рак поджелудочной железы». Мы также провели поиск в различных других источниках, чтобы получить информацию о физико-химических и других характеристиках описанных трав и растений. Все исследования in vivo и in vitro были идентифицированы и проверены. Данные собирались до июня 2021 года. Выявленные исследования, как экспериментальные, так и клинические, были разделены на пять категорий в зависимости от их предмета и задачи: (i) клинические исследования, например, исследования, изучающие роль определенных растений у пациентов с PC; (ii) исследования, изучающие роль трав в стволовых клетках PC; (iii) исследования, сочетающие наномедицину с травами; (iv) исследования, изучающие роль сочетания растений с химиотерапией; и, наконец, (v) исследования, изучающие антипролиферативное действие растений в линиях клеток PC, категория, представляющая подавляющее большинство доступных исследований. Для того, чтобы помочь читателю увидеть некоторые детали одного конкретного растения, данные были процитированы в алфавитном порядке. Была также сделана попытка включить химическую структуру описанных растений и трав, по крайней мере, в качестве приблизительного описания, поскольку подавляющее большинство растений и трав состоит из большого количества веществ или групп веществ. В некоторых из них их химическая структура была описана схематически. Информация о потоке через различные фазы этого систематического обзора приведена вРисунок 1.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g001.jpg

Блок-схема PRISMA, использованная в данном систематическом обзоре.

В общей сложности 183 статьи были исключены из-за ссылок на обзоры ( n = 126), систематические обзоры ( n = 10) и метаанализы ( n = 8). Клинические испытания ( n = 26) и рандомизированные клинические испытания ( n = 13) также были исключены, в основном потому, что они ссылались на диетические модели, качество жизни и другие параметры, не связанные с влиянием трав и растений на клиническое течение пациентов с PC.

3. Результаты

С января 1993 года по июнь 2021 года было включено 125 экспериментальных и клинических исследований, посвященных влиянию растений и трав на PC. В настоящий систематический обзор мы смогли идентифицировать 86 исследований, рассматривающих эффекты 74 различных трав и производных растений, исследованных в экспериментальных моделях линий клеток PC и ксенотрансплантатов PC. Мы также выявили небольшое количество клинических исследований, изучающих роль добавления растений или растительных экстрактов в химиотерапию у пациентов с прогрессирующим PC. Что касается клинических исследований, изучающих влияние производных растений на стволовые клетки PC, мы выявили пять соответствующих исследований. Что касается исследований, сочетающих нанотехнологии с травами и растениями, нацеленными на клетки PC, мы выявили семь. Наконец, мы включили удовлетворительное количество статей, ссылающихся на 22 различных растения и травы, рассматривающих цитотоксические эффекты совместного введения химиотерапевтических агентов с растениями. Большинство изученных растений произрастают в азиатских странах, в основном в Китае и Индии, тогда как остальные — это растения, произрастающие в других частях мира.

3.1 Клинические исследования использования растений в лечении рака поджелудочной железы

До сих пор было проведено очень мало клинических исследований, касающихся использования растений в лечении пациентов с PC. Однако почти все они, включая два отчета о случаях, показали явную клиническую пользу, что означает, что необходимо провести больше исследований с удовлетворительным числом пациентов. Растения, использованные в этих исследованиях, проанализированы ниже.

3.1.1.PHY906

PHY906 состоит из шести трав, а именно Scutellaria baicalensis Georgi, Glycyrrhiza uralensis Fisch., Ziziphus jujuba Mill. и Paeonia lactiflora Pall [  ]. Большое количество химических веществ, включая 126 малых молекул и 6 полисахаридов, было выделено из Scutellaria baicalensis , в основном принадлежащих к категориям флавоноидов и гликозидов [  ]. Glycyrrhiza uralensis включает в себя биоактивные молекулы, такие как тритерпеновые сапонины и флавоноиды [  ]. Что касается Ziziphus jujuba Mill, в этаноловом экстракте было идентифицировано 22 соединения. Четыре исходных соединения и четыре метаболита были также обнаружены в сыворотке крови крыс [  ]. Наконец, Paeonia lactiflora содержит полиненасыщенные и мононенасыщенные жирные кислоты, особенно олеиновую и α-линоленовую кислоты [  ]. Похоже, что ингибирование CYP3A4; модуляция цитокинов, макрофагов и лимфоцитов; и ингибирование NF-kB, бета-глюкуронидазы и дельта-опиоидного рецептора представляют собой наиболее значимые механизмы действия PHY906. Эта смесь трав кажется вполне безопасной, если ее употреблять в дозах менее 2,4 г в день. В исследовании фазы II 25 пациентов с прогрессирующим PC, ранее лечившихся схемами на основе гемцитабина, лечились PHY906 плюс капецитабин [  ]. Результаты показали, что медиана выживаемости без прогрессирования и медиана общей выживаемости составляли 10,1 и 21,6 недели соответственно. Восемнадцать пациентов, получивших не менее двух циклов, достигли медианной выживаемости без прогрессирования 12,3 недель и медианной общей выживаемости 28 недель. Шестимесячная выживаемость составила 44%.

3.1.2 Экстракт омелы белой

Viscum album — полупаразитический кустарник, растущий на стволах других деревьев, произрастающий в Европе, Западной и Южной Азии. Он содержит несколько белков, полисахаридов, фенолов и различных других соединений, отвечающих за химические свойства этого продукта [  ]. Экстракты Viscum album обладают цитотоксическими, апоптотическими и иммуностимулирующими свойствами. Вискумин, цитотоксический белок Viscum album , ингибирует синтез белка, связываясь с остатками галактозы гликопротеинов клеточной поверхности и инактивируя рибосомальную субъединицу 60S. Tröger et al., используя экстракт Viscum album три раза в неделю в возрастающих дозах (0,01–10 мг) без одновременного назначения противоопухолевой терапии у 220 пациентов с местнораспространенным или метастатическим PC, показали, что медиана общей выживаемости составила 4,8 месяца для Viscum album по сравнению с 2,7 месяца для контрольных пациентов. В подгруппе с «хорошим» прогнозом медиана общей выживаемости составила 6,6 против 3,2 месяцев, тогда как в подгруппе с «плохим» прогнозом она составила 3,4 против 2,0 месяцев соответственно. Неблагоприятных событий не наблюдалось. В этом исследовании терапия Viscum album привела к продлению общей выживаемости [  ]. Werthmann et al. также описали случай пациента с запущенным раком печени с резекцией R1, у которого развились метастазы в печени. Пациент получал сопутствующий FOLFIRINOX, а затем был добавлен Viscum album . При таком режиме была достигнута выживаемость пациента и безрецидивная выживаемость пациента 63 и 39 месяцев соответственно [  ].

3.1.3 Омела белая

Омела — облигатное полупаразитическое растение, основными компонентами которого являются искотоксины, лектины, флавоноиды, стерины и алкалоиды [  ]. Форатоксин и тирамин вызывают некоторые побочные эффекты, включая диарею, рвоту, нарушения сердечного ритма и остановку сердца. Его использовали среди других методов лечения в качестве дополнительного лечения онкологических больных. Однако использование этого растения для лечения рака не было одобрено FDA США.

Листья омелы пользуются большой популярностью в Европе из-за их иммуномодулирующих и цитотоксических свойств, включая индукцию апоптоза и захват химиотерапевтических препаратов внутри раковых клеток через ингибирующий потенциал P-гликопротеина. Что касается клинических данных, Маттес и др. провели наблюдательное фармакоэпидемиологическое исследование у пациентов, прооперированных по поводу PC. Пациенты лечились гемцитабином с поддержкой омелы или только гемцитабином. Омела улучшала симптомы и общую выживаемость пациентов. Поэтому ее можно было использовать в качестве поддерживающей терапии в протоколах гемцитабина у пациентов, прооперированных по поводу PC [  ]. В отчете о случае также подчеркивались клинические преимущества, полученные от приема этого растения. Риттер и др. описали случай женщины 43 лет, которая перенесла резекцию головки поджелудочной железы плюс девять циклов паллиативного лечения гемцитабином плюс оксалиплатином и сопутствующее лечение омелой. Спустя десять месяцев у пациента не было никаких признаков прогрессирования опухоли [  ].

3.2 Влияние растительных производных на стволовые клетки ПК

Большое количество раковых стволовых клеток было идентифицировано в тканях PC. Эти раковые стволовые клетки, по-видимому, играют важную роль в возникновении и развитии опухоли, а также обладают способностью делиться и дифференцироваться точно так же, как родительская стволовая клетка. Другой весьма важной характеристикой этих клеток является их способность быть устойчивыми к текущим химиотерапевтическим агентам. Очевидно, поэтому, что любая противораковая терапия, чтобы быть успешной, должна также быть нацелена на раковые стволовые клетки [  ]. Соответствующие исследования анализируются далее.

3.2.1. Сок горькой дыни

Основными компонентами горькой дыни являются тритерпеновые, протеидные, стероидные, алкалоидные, неорганические, липидные и фенольные соединения. Несколько гликозидов также были выделены из Momordica charantia [  ]. Дхар и др. [  ] исследовали эффективность сока горькой дыни против CD44 + /CD24 + /EpCAM высокообогащенных стволовых клеток PC в сфероидных анализах. Они обнаружили, что сок горькой дыни повышает чувствительность стволовых клеток PC, устойчивых к гемцитабину, и снижает экспрессию генов, участвующих в пролиферации стволовых клеток. Однако срочно необходимы дальнейшие исследования его эффективности против PC, включая случаи устойчивости к гемцитабину.

3.2.2. Кроцетиновая кислота ( Gardenia jasminoides )

Были выделены и охарактеризованы несколько химических компонентов Gardenia jasminoides , включая иридоиды, глюкозиды и тритерпеноиды. Были выделены три основных биоактивных соединения, а именно генипозид, генипин и гарденозид [  ]. Кроме того, Gardenia jasminoides содержит кроцетин, природную апокаротиноидную дикарбоновую кислоту. Это химическое вещество представляет собой каротиноидный компонент шафрана, который демонстрирует противоопухолевое действие в животных моделях. Рангараджан и др. обнаружили, что кроцетиновая кислота ингибирует пролиферацию линий клеток PC и индуцирует апоптоз в зависимости от дозы и времени. Кроцетиновая кислота также ингибирует рецептор эпидермального фактора роста, уменьшает количество и размер панкосфер и подавляет экспрессию маркерного белка даблкортин кальций/кальмодулин-зависимой киназы-1. Кроцетиновая кислота в дозе 0,5 мг/кг массы тела также подавляла рост опухолевых ксенотрансплантатов [  ].

3.2.3. Гиспидин ( Phellinus linteus )

Ли и др. очистили шесть соединений из гриба Phellinus linteus с помощью обращенно-фазовой высокоэффективной жидкостной хроматографии, а также идентифицировали их структуры спектроскопическими методами как кофейную кислоту, инотилон, 4-(3,4-дигидроксифенил)-3-бутен-2-он, феллилан H, (2 E ,4 E )-(+)-4′-гидрокси-γ-ионилиденуксусную кислоту и (2 E ,4 E )-γ-ионилиденуксусную кислоту; первые три проявляют наиболее мощную антиоксидантную активность [  ]. Этот гриб также содержит гиспидин, полифенольное соединение, которое, как было показано, обладает противоопухолевыми свойствами. Чандимали и др. оценили цитотоксическое действие гиспидина на клетки PC BxPC-3 и AsPC-1. Они также исследовали возможный синергический эффект гемцитабина и гиспидина на стволовые клетки PC in vitro. Они обнаружили, что гиспидин оказывал противоопухолевое действие как на клетки PC, так и на стволовые клетки. Кроме того, гиспидин сенсибилизировал стволовые клетки PC к гемцитабину, тем самым способствуя его терапевтической эффективности [  ].

3.2.4 Кверцетин и ресвератрол

Кверцетин — это флавонол, состоящий из пятнадцати атомов углерода, с двумя ароматическими кольцами, соединенными трехуглеродным мостиком. Основная структура бензопиран-4-она делает его гидрофобным соединением. Богатыми пищевыми источниками кверцетина являются лук, ягоды и яблоки [  ]. Ресвератрол — это соединение, которое относится к категории фитоалексинов (на основании его функции) и к категории стильбеноидов (на основании его структуры), поскольку его основная структура — стильбен [  ]. В исследовании, направленном на изучение влияния этих фитохимических веществ на эпителиально-мезенхимальный переход стволовых клеток ПК, Хока и др. представили клетки CD133+ и CD133− PANC-1 при различных концентрациях ресвератрола и кверцетина. Они обнаружили, что интенсивность иммуноокрашивания клеток CD133+ была сильнее, чем клеток CD133−. Иммунореактивность ACTA-2, IL-1β и N-кадгерина снизилась, тогда как иммунореактивность TNF-α и виментина увеличилась в клетках CD133+, обработанных кверцетином [  ].

3.2.5 Пао Перейра

Pao pereira — это коренное дерево, растущее в тропических лесах Амазонки. Активные компоненты, в основном индольные алкалоиды и бета-карболиновые алкалоиды, были получены из экстрактов растений того же рода [  ]. Он использовался как жаропонижающее, противовирусное, противомалярийное и противораковое средство, как отдельно, так и в сочетании с другими химиотерапевтическими средствами. В соответствующем исследовании было обнаружено, что pao pereira подавляет пролиферацию линий клеток PC и уменьшает популяцию линий стволовых клеток PC. Более того, уровни ядерного β-катенина были снижены, что предполагает подавление сигнального пути Wnt/β-катенина. Наконец, в экспериментах in vivo pao pereira снижал онкогенность линий клеток PC у мышей с ослабленным иммунитетом [  ]. Pao Pereira представляет собой новую терапевтическую стратегию, нацеленную на стволовые клетки PC.

3.3 Нанотехнологии для ПК

Роль нанотехнологий в лечении рака заключается в разработке и улучшении физико-химических свойств противораковых препаратов (например, растворимости в воде или времени циркуляции после введения) с целью повышения их эффективности. До сих пор было опубликовано небольшое количество исследований относительно использования нанотехнологий у пациентов с PC в сочетании с гемцитабином и другими молекулами. Среди нанотехнологий, используемых в PC, некоторые являются сайт-специфичными, тогда как другие использовались в качестве визуального руководства и контролируемого высвобождения. Нанотехнологии имеют ряд преимуществ по сравнению с традиционными технологиями, поскольку они могут направлять молекулы лекарств к целевому месту назначения. С другой стороны, размер наночастиц (1–100 нм) улучшает диагностическое и терапевтическое противостояние PC посредством взаимодействия с биологическими молекулами [  ]. Избирательное высвобождение противораковых препаратов в раковые ткани чрезвычайно сложно, хотя нанотехнологии преодолевают эту трудность. Из-за своего большого размера внутривенно вводимые наноразмерные макромолекулярные химиотерапевтические препараты не могут выводиться в мочу или проникать в плотные соединения эндотелиальных клеток нормальных кровеносных сосудов, тем самым увеличивая свою концентрацию в плазме и время полувыведения. Напротив, они могут проникать в злокачественную ткань из-за наличия большого количества сосудистых аномалий (гиперваскуляризация, аберрантная сосудистая архитектура и т. д.), присутствующих в неопластической ткани, способствующих этому проникновению [  ,  ]. Таким образом, можно достичь высоких концентраций химиотерапевтического препарата в раковых тканях, что приводит к улучшению терапевтического эффекта и снижению частоты побочных эффектов. Наконец, связывание наночастиц с химиотерапевтическими агентами может усилить проникновение в опухоль, увеличить время циркуляции препарата, снизить скорость детоксикации печени и почек и предотвратить токсические эффекты использования адъювантов [  ]. Хотя существует большое количество комбинированных формул наночастиц-лекарств [  ], имеется ограниченное количество экспериментальных исследований, объединяющих нанотехнологии с травами и растениями, нацеленными на ПК. Эти исследования анализируются впоследствии.

3.3.1. Наночастицы PLGA, инкапсулированные в антотекол (Khaya Anthotheca—Meliaceae)

Антотекол, эффективное противомалярийное соединение, представляет собой лимоноид, выделенный из растения Khaya anthotheca, химическая структура которого показана на рисунке.Рисунок 2.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g002.jpg

Химическая структура лимонина (доступно онлайн: https://pubchem.ncbi.nlm.nih.gov , дата обращения 10 декабря 2021 г.).

В соответствующем исследовании Верма и др. обнаружили, что инкапсулированные в антотекол наночастицы PLGA индуцируют апоптоз в стволовых клетках ПК и линиях раковых клеток, а также снижают подвижность, миграцию и инвазию клеток [  ].

3.3.2. Эйзенхардтия плоскоплодная

Eysenhardtia platycarpa — растение, экстракты которого использовались в мексиканской традиционной фитотерапии. Полезные для здоровья свойства растения связаны с содержащимися в нем фенольными соединениями, в основном флавоноидами, группой производных бензопирона с потенциальными противовоспалительными свойствами [  ]. Листья Eysenhardtia platycarpa содержат флавонон (2 S )-5,7-дигидрокси-6-пренилфлаванон. Это соединение использовалось для получения цитотоксических производных. Соединения 1, 1a, 1b, 1c и 1d, а также соединения, инкапсулированные в полимерные ноночастицы (NPs1, NPs1a, NPs1b, NPs1c и Nps1d), показали цитотоксическую активность против линии клеток PC [  ]. Наночастицу NPs1a можно рассматривать как перспективное средство против PC.

3.3.3. Золотые наночастицы Panax notoginseng

Panax notoginseng, вид рода Panax, обычно называют китайским женьшенем, поскольку он растет в Китае. Основными компонентами Panax notoginseng являются гинзенозиды даммаранового типа [  ]. В традиционной китайской медицине обычная доза отвара Panax notoginseng составляет 5–10 г. Ван и др. [  ] синтезировали золотые наночастицы из Panax notoginseng. Эти золотые наночастицы индуцировали цитотоксичность и апоптоз в линиях клеток PC посредством усиления экспрессии апоптотических генов.

3.3.4. Умные наночастицы, загруженные Parvifloron-D

Plectranthus — растение, произрастающее в основном в Южном полушарии. Он включает более 350 видов, некоторые из которых используются как декоративные растения, листовые овощи и корнеплоды. Было обнаружено, что изолированные соединения рода Plectranthus , такие как parvifloron D (Derris parviflora), растущие в Шри-Ланке, обладают цитотоксической и антипролиферативной активностью. Сантос-Ребело и др. [  ] оценили антипролиферативное действие parvifloron D, выделенного из P. ecklonii , против линий клеток PC с использованием наночастиц альбумина. Они обнаружили, что parvifloron D обладает селективной и значительной цитотоксичностью против линий PC.

3.3.5 Силибинин

Силимарин , экстракт из лекарственного растения Silybum marianum (расторопша пятнистая), состоит в основном из силибина и его изомеров, силикристина и силидианина. Это вещество проявляет значительную антиоксидантную и мембраностабилизирующую активность, тем самым защищая различные органы от химического повреждения. Оно также может усиливать регенеративную способность печени [  ]. Наконец, было показано, что эти флавоноидные агенты также оказывают значительное противоопухолевое действие в различных моделях рака in vitro и in vivo. В соответствующем исследовании [  ] было показано, что силибинин, инкапсулированный в полимерсомные наночастицы, индуцировал апоптоз и ингибировал миграцию и пролиферацию в клетках ПК и раковых стволовых клетках посредством подавления онко-миРНК и индукции подавляющих опухоль микроРНК.

3.3.6 Наночастицы оксида цинка с использованием экстракта листьев Anacardium occidentale

Тропическое дерево Anacardium occidentale производит семена кешью и яблоки. Химические компоненты в основном состоят из глютелина, альбумина, глобулина и других белковых изолятов [  ]. Следует подчеркнуть, что кешью могут вызывать серьезные аллергические реакции в пропорции выше 6%. Чжао и др. синтезировали наночастицы оксида цинка с экстрактом листьев Anacardium occidentale путем кипячения смеси 10 мл экстракта листьев Anacardium occidentale и 30 мл 0,1 М нитрата цинка при 60 °C в течение 3 часов. Результаты показали, что наночастицы оксида цинка проявили значительную цитотоксичность против линий клеток PC в зависимости от дозы [  ].

3.3.7. Наночастицы золота Scutellaria barbata

Scutellaria barbata — многолетнее травянистое растение, распространенное в Корее и на юге Китая. Что касается химических соединений этого растения, оно, по-видимому, содержит флавоноиды, дитерпеноиды, полисахариды, эфирное масло и стероиды [  ]. Это растение использовалось в Китае и Корее для лечения пациентов со злокачественными заболеваниями [  ]. Помимо противораковых свойств, сообщалось, что Scutellaria barbata обладает противовоспалительными, антиоксидантными и антимикробными свойствами. Ван и др. синтезировали золотые наночастицы из Scutellaria barbata с использованием метода зеленого маршрута и оценили его противораковую активность против линий клеток PC. Синтезированные золотые наночастицы показали сильную противораковую активность [  ]. Дальнейшие исследования этого растения могут помочь в разработке новых противораковых препаратов против PC.

3.4. Комбинированное применение растений с химиотерапевтическими средствами у больных раком предстательной железы

Нуклеозидный аналог гемцитабин считается одним из важнейших химиотерапевтических средств для лечения PC. Однако он показывает низкий уровень ответа и свободного выживания из-за развития химиорезистентности. В клинической практике до 50% пациентов с заболеванием, ранее леченным гемцитабином, направляются на дальнейшее лечение. Медиана выживаемости при наилучшем поддерживающем уходе у пациентов, у которых гемцитабин оказался неэффективным, составляет не более двух месяцев. Поэтому потребность в новых средствах для лечения прогрессирующего PC в случаях резистентности к гемцитабину имеет большое значение для исхода у пациентов. В последние годы ряд растений и производных растений, вводимых в сочетании с гемцитабином, показали многообещающие противораковые результаты, воздействуя на многие сигнальные пути в моделях PC in vitro и in vivo [  ]. Эти растения (в алфавитном порядке) показаны наТаблица 1, и обобщены впоследствии.

Таблица 1

Исследования, сочетающие растения с химиотерапевтическими средствами (в алфавитном порядке).

Ссылка Травяной Результаты Заключение
Шимада
и др.,
2018
 ]
Экстракт спаржи Экстракт спаржи подавил экспрессию белка теплового шока 27 в клетках klm1-r. Усиливает противораковое действие при сочетании с гемцитабином при ПК.
Тани и др.,
2014
 ]
Экстракт аронии черноплодной (Aronia melanocarpa ) Гемцитабин в сочетании с экстрактом аронии оказался более эффективным, чем гемцитабин отдельно, на линии клеток поджелудочной железы человека. Химиотерапию гемцитабином можно дополнить экстрактом аронии.
Цянь и др.,
2016
 ]
Эмульсия семян коикса Эмульсия семян коикса синергетически сенсибилизировала линии клеток PC к гемцитабину как in vitro, так и in vivo. Эмульсия семян коикса сенсибилизировала клетки ПК к терапии гемцитабином.
Пак и др.,
2021
 ]
С5Е Клетки боковой популяции и жизнеспособность клеток PANC-1 снизились после лечения. Уровни экспрессии мРНК Sonic Hedgehog значительно снизились после совместного лечения. Комбинированное лечение гемцитабином и C5E может оказывать синергическое действие на клетки PANC-1.
Вэй и др.,
2011
 ]
Эмодин Комбинированное лечение способствовало апоптотической гибели клеток и фрагментации митохондрий, а также снижало уровень фосфорилированного Akt, активацию NF-κB и соотношение Bcl-2/Bax. Эмодин, который может либо усилить действие гемцитабина, либо преодолеть химиорезистентность к нему.
Риммон
и др.,
2013
 ]
Эскин
Aesculus hippocastanum )
Эсцин с гемцитабином показал аддитивный эффект, тогда как сочетание с цисплатином оказало синергический цитотоксический эффект. Синергетический эффект при сочетании с цисплатином.
Kim et al.,
2018
[]
Fisetin Combination treatment with fisetin and gemcitabine inhibited proliferation of PC cells, and induced apoptosis.
Fisetin sensitized PC cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling.
Combination of fisetin and gemcitabine represent a novel therapeutic strategy for PC.
Capistrano
et al.,
2016
[]
Gloriosa ignal L. (glory lily, Colchicaceae) Delay in tumour growth for gemcitabine and the combination therapy compared to the control group, and prolongation of the survival. It has an added value combined with gemcitabine in PC.
Pak et al.,
2016
[]
Herbal mixture
extract
Inhibition of PANC1 cell growth. Suppression of stem cell-like side population cell and migration activity. Suppression of tumor growth in a PANC1-xenograft model. Possible therapeutic agent for PC and cancer stem cells.
Li
et al.,
2018
[]
Isodon eriocalyx and its bioactive component eriocalyxin b Gemcitabine and eriocalyxin B had synergistic anti-proliferative effect.
The underlying mechanisms involved included increased activation of the caspase cascade and induction of JNK phosphorylation.
Gemcitabine and eriocalyxin B taken together promoted apoptosis acting synergistically.
Akasaka
et al.,
2013
[]
Monogalactosyl diacylglycerol Gemcitabine and monogalactosyl diacylglycerol suppressed growth in PC cell lines. Synergistic effect on inhibition of DNA replicative polymerase inhibitors compared with gemcitabine or monogalactosyl diacylglycerol alone. Pre-addition of monogalactosyl diacylglycerol enhanced cell proliferation suppression by gemcitabine. Spinach monogalactosyl diacylglycerol could be an effective clinical anticancer chemotherapy in combination with gemcitabine.
Akasaka
et al.,
2016
[]
Monogalactosyl diacylglycerol
plus radiation
A dose- and time-dependent cytotoxicity, and reduced cell colonies upon treatment with both monogalactosyl diacylglycerol and radiation as compared to irradiation alone.
Higher proportion of apoptosis and DNA damage in pancreatic cancr cells as compared to either one alone.
Enhances the cytotoxicity of radiation in PC cells in vitro and in vivo. Combination with radiation could be effective in PC.
Hagoel
et al.,
2019
[]
Moringa
olifeira
Moringa administration combined with radiation therapy significantly inhibited human PC cell survival, induced apoptosis, and reduced metastatic potential. Inhibition of growth of tumors generated by PC cells in nude mice. Additional inhibitory effect by overcoming the radioresistance of PC cells.
Gong et al.,
2017
[]
Nexrutine Combination treatment of human PC cells with nexrutine and gemcitabine: significant alterations of proteins in the STAT3/NF-κB signaling axis and growth inhibition in a synergistic manner. The natural extract nexrutine can improve gemcitabine sensitivity.
Hernandez-Unzueta et al.,
2019
[]
Ocoxin It enhances the cytotoxic effect of paclitaxel and gemcitabine, and ameliorates the chemo-resistance in PC cells. It promotes the expression of the altered genes, and decreases tumor development in vivo. A potential complement to chemotherapeutic agents used in PC
Cheung
et al.,
2015
[]
Oplopanax horridus (Devil’s club or devil’s walking stick) This extract alone, or in combination with cisplatin, gemcitabine, and paclitaxel, induced toxicity on pancreatic endocrine HP62 and PC.
It inhibited proliferation of HP62, PANC-1, and BxPC-3 cells.
It can be used as an adjunct therapy for patients with resistance to conventional chemo-therapeutic agents.
Tai
et al.,
2014
[]
Oplopanax horridus (Devil’s club or devil’s walking stick) PANC-1 3D spheroids were more resistant to killing by Oplopanax horridus extract, gemcitabine, and paclitaxel compared to 2D cells. It enhanced the antiproliferation activity of cisplatin and gemcitabine.
The bioactive compound showed strong antiproliferation activity against PANC-1 2D cells and 3D spheroids.
It enhances the activity of chemotherapeutics against PC cells.
3D spheroid model helps in discovering in vivo bioactive compounds.
Liu
et al.,
2018
[]
Paeonia suffruticosa aqueous extracts Alone or in combination with gemcitabine, delayed tumor growth in a xenograft model by stimulating the endoplasmic-reticulum-related proteostasis stress, and inducing autophagy and cell apoptosis. Potential therapeutic effect in PC in combination with gemcitabine.
Yu et al.,
2013
[]
Pao Pereira Combination with gemcitabine had a synergistic effect in the inhibition of cell growth. In an orthotopic pancreatic xenograft mouse model, gemcitabine did not show inhibition, whereas Pao Pereira suppressed tumor growth. Combined treatment enhanced the tumor inhibitory effect vs. gemcitabine alone. The extract of Pao Pereira possesses anti-PC abilities, and enhances the effects of gemcitabine both in vitro and in vivo.
Рават и др.,
2020
 ]
Пиперлонгумин Пиперлонгумин подавляет пролиферацию клеток и увеличивает внутриклеточные активные формы кислорода. P53, P21, BAX и SMAD4 активируются, тогда как BCL2 и сигнальная система активируются отрицательно. Пиперлонгумин с паклитакселом оказывает синергическое действие.
Цзян
и др.,
2016
 ]
Ресвератрол Ресвератрол подавлял пролиферацию и индуцировал апоптоз в клетках PC.
Активированное YES подавление белка ресвератролом повышало чувствительность гемцитабина в клетках PC.
Активированный YES белок является перспективной мишенью для сенсибилизации раковых клеток к химиотерапии.
Ю и др.,
2014
 ]
Раувольфия рвотная Rauwolfia vomitoria индуцировала апоптоз в моделях PC.
Совместное введение Rauwolfia vomitoria и гемцитабина имело синергетический эффект в ингибировании роста клеток. Rauwolfia vomitoria подавляла рост опухоли и метастатический потенциал в ортотопической модели PC у мышей.
Комбинация снижает опухолевую нагрузку и метастатический потенциал в опухолях, не поддающихся лечению гемцитабином.
Му
и др.,
2015
 ]
Тимохинон Предварительная обработка тимохиноном после гемцитабина увеличила апоптоз раковых клеток и ингибировала рост опухоли. Сочетание вызвало снижение регуляции антиапоптотических и повышение регуляции проапоптотических молекул. Предварительная обработка тимохиноном может усилить противораковую активность гемцитабина.
Янг
и др.,
2011
 ]
Триптолид Комбинированная терапия триптолидом и гидроксикамптотецином на линии клеток PC оказалась эффективнее, чем терапия триптолидом или гидроксикамптотецином по отдельности. Активация каспазы-9/каспазы-3 и ингибирование сигнального пути NF-κB были ответственны за синергический цитотоксический эффект. Следует изучить возможность применения комбинированной терапии триптолидом и гидроксикамптотецином у пациентов с ПК.

3.4.1 Спаржа

Экстракт спаржи — это натуральное средство, получаемое из побегов, корней и корневищ растения спаржи, используемое в альтернативной и аюрведической медицине при расстройствах мочеиспускания. Основными биоактивными компонентами спаржи являются стероидные сапонины. Другими химическими компонентами спаржи являются эфирные масла, аспарагин, аргинин, тирозин, флавоноиды, смола и танин [  ]. Он, вероятно, безопасен при употреблении в рекомендуемых количествах. Продукт, содержащий корень спаржи и листья петрушки, небезопасен при приеме в дозах более 6 г/день. Нет никаких рекомендаций по надлежащему использованию экстракта спаржи, хотя дозировки до 150 мг/день использовались в краткосрочных исследованиях без зарегистрированных побочных эффектов. Шимада и др. [  ] показали, что обработанный ферментом экстракт спаржи подавляет экспрессию белка теплового шока27 в клетках klm1-r, что предполагает его потенциальную терапевтическую пользу в усилении противораковых эффектов при сочетании с гемцитабином.

3.4.2 Экстракты аронии ( Aronia melanocarpa )

Aronia melanocarpa , черноплодная рябина, является видом кустарника семейства розовых, произрастающим в восточной части Северной Америки. Полифенолы являются биофакторами, которые определяют высокую биологическую активность черноплодной рябины, и включают проантоцианидины, флавонолы, флаванолы, проантоцианидины и фенольные кислоты [  ]. Большинство благоприятных эффектов антоцианов Aronia melanocarpa обусловлены их высокой антиоксидантной активностью. Они являются гепатопротекторами со значительной противовоспалительной и бактериостатической активностью in vitro против микробов и вирусов. Наконец, они обладают антимутагенной активностью и подавляют рост клеток рака толстой кишки человека. Нет никаких сообщений о побочных эффектах этого растения. Тани и др. исследовали проапоптотические эффекты экстракта черноплодной рябины в линии клеток PC человека, и он, возможно, усилил цитотоксичность в сочетании с гемцитабином. Было обнаружено, что эта комбинация более эффективна, чем один гемцитабин [  ].

3.4.3 Эмульсия семян коикса

The pharmacological extract of Coix lachrymal-jobi seeds, a cereal grain mainly popular in tropical Asia, represents the most commonly used anticancer agent in China. An NFkB-depended assay demonstrated dose-dependent inhibition of NFkB signaling after treatment of cultures with this extract, associated with a reduced translocation of the Rel-A/p65 subunit of NFkB to the nucleus. Coix extract also inactivated protein kinase C, a major activator of NFkB []. Qian et al. showed that pre-treatment with coix seed emulsion synergistically sensitized PC cell lines to gemcitabine. Pre-treatment with coix seed emulsion resulted in induction of proapoptosis proteins after lower doses of gemcitabine compared to monotherapy. Furthemore, coix seed emulsion suppressed the gemcitabine-induced activation of NF-kB, and down-regulated the anti-apoptotic molecules Bcl-2, surviving, and COX-2. In in vivo experiments, coix seed emulsion combined with gemcitabine had a higher antitumor activity compared to either agent alone [].

3.4.4. C5E

Pak et al. produced a novel herbal mixture extract cocktail containing 10 types of traditional Chinese medicine herbs (C5E) []. These authors investigated the anticancer effect of this herbal mixture in the PC cell line, PANC-1, in the absence or presence of gemcitabine. They found that the percentage of side population cells, and the cell viability of PANC-1 cells, were decreased in response to all treatments via induction of apoptosis. The mRNA expression levels of sonic hedgehog were down-regulated to a greater extent following the co-treatment with C5E and gemcitabine compared with the treatment with either C5E or gemcitabine alone, suggesting that the combined treatment may exhibit synergistic effects in PANC-1 cells.

3.4.5. Emodin

Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8, and by a methyl group at position 6. It is present in the roots and barks of numerous plants, moulds, and lichens. It derives from an emodin anthrone. The chemical structure of Emodin is shown in Figure 3.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g003.jpg

Chemical structure of Emodin Available on line https://pubchem.ncbi.nlm.nih.gov, (accessed on 10 December 2021).

Wei et al. found that emodin suppressed tumor growth in mice inoculated with PC cells. The combination treatment with gemcitabine promoted apoptotic cell death and mitochondrial fragmentation, and reduced phosphorylated-Akt level, NF-κB activation, and Bcl-2/Bax ratio [].

3.4.6. Escin

Aesculus hippocastanum represents a well-known plant in Chinese medicine having anti-inflammatory, antianalgesic, and antipyretic activities. It is commonly known as a horse-chestnut or conker tree. Escin is the main active component in horse chestnut, and is responsible for most of its medicinal properties, although the mixture also contains various other components []. Escin appears to act through a wide range of mechanisms, including the induction of endothelial nitric oxide synthesis, and the release of prostaglandin F, serotonin, and histamine antagonism, as well as the reduction of the catabolism of tissue mucopoly-saccharides. Rimmon et al. showed that Escin decreased the survival of PC cells, and down-regulated the NF-κB signaling pathway. Escin combined with gemcitabine showed only an additive effect, whereas its combination with cisplatin resulted in a significant synergistic cytotoxic effect in PANC-1 cells [].

3.4.7. Fisetin

Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3′, and 4′ (3,3,4,7-OH flavone). It represents one of the most prevalent plant flavonoids present in many fruits and vegetables. It can modulate a number of cancer signaling pathways and growth factors, such as Akt, JNK, p38MAPK, NF-κB, and VEGF cytokines and chemokines, thus inducing apoptosis and cell cycle arrest []. The chemical structure of Fisetin is shoun in Figure 4.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g004.jpg

Chemical structure of Fisetin.

Kim et al. showed that combination treatment with fisetin and gemcitabine inhibited the proliferation of PC cells, and induced apoptosis. They also showed that Fisetin sensitized human PC cells to gemcitabine-induced cytotoxicity through the inhibition of ERK-MYC signaling [].

3.4.8. Gloriosa superba L. (Glory Lily, Colchicaceae)

Gloriosa superba is a species of flowering plant in the family Colchicaceae. This plant contains colchicine, and alkaloids related to colchicines, such as 3-O-demethylcolchicine, have been used succesfully in the treatment of gout []. The plant is poisonous and toxic enough to cause death if ingested in large quantities. Every part of the plant is poisonous, especially the tuberous rhizomes. In a murine model of PC, Capistrano et al. evaluated a crude ethanolic extract and colchicine-poor/colchicoside-rich extract []. They were administered at a dose of 4.5 mg/kg (p.o., daily) total content of colchicine and derivatives during 3 weeks, or at a dose of 3.0 mg/kg (p.o., daily) combined with gemcitabine (60 mg/kg, i.p., 3×/week) for 54 days. The results revealed a significant delay in tumour growth over time for gemcitabine and the combination therapy compared to the control group. A significant prolongation of the survival of the groups treated with gemcitabine and the combination therapy was also observed.

3.4.9. Herbal Mixture Extract

Herbal mixture extract is composed of three oriental herbal plants, 40% Meliae fructus (China), 40% Cinnamon bark (Vietnam), and 20% Sparganium rhizome (China), that are considered to have anticancer activity. In a relevant study, Pak et al. [] showed that herbal mixture extract inhibited PC cell growth by promoting G0/G1 arrest and apoptotic cell death. It also suppressed stem-cell-like side population cells and migration activity. In a PC xenograft model, herbal mixture extract suppressed tumor growth by 46%, compared to a 36% decrease caused by gemcitabine. However, contrary to the in vitro results, combined treatment of herbal mixture extract with gemcitabine enhanced tumor growth, suggesting that this co-treatment is not beneficial for PC.

3.4.10. Isodon Eriocalyx and Its Bioactive Component Eriocalyxin-b

Isodon is a group of flowering plants in the family lamiaceae. The plant is native to tropical and subtropical parts of the world. Li et al. showed that eriocalyxin-b, a diterpenoid isolated from isodon eriocalyx, possesses anti-PC effects. They also noticed that gemcitabine and eriocalyxin-b had a synergistic anti-proliferative effect, as both cellular apoptotic and anti-proliferative effects of gemcitabine were increased after combined administration with eriocalyxin-b. The mechanisms involved included increased activation of the caspase cascade, and induction of JNK phosphorylation. Therefore, gemcitabine and eriocalyxin-b taken together regulated pdk1/akt1/caspase and JNK signaling, and promoted apoptosis synergistically [].

3.4.11. Monogalactosyl Diacylglycerol

Monogalactosyl diacylglycerol, derived from spinach, possesses cytotoxic effects in human cancer cell lines. Akasaka et al. isolated monogalactosyl diacylglycerol from spinach. In separate experiments, they showed that gemcitabine and monogalactosyl diacylglycerol suppressed growth of PC cell lines via selective inhibition of replicative polymerase inhibitors species. Moreover, gemcitabine combined with monogalactosyl diacylglycerol had synergistic effects on the inhibition of DNA replicative polymerase inhibitors, compared with gemcitabine or monogalactosyl diacylglycerol alone []. In a subsequent study, the same group of researchers investigated the role of this compound in enhancing the effect of radiation on human PC cell lines and normal human dermal fibroblasts in vitro and in vivo. They noticed that monogalactosyl diacylglycerol showed a dose- and time-dependent cytotoxicity, as well as a reduction in the number of cell colonies, upon treatment with both monogalactosyl diacylglycerol and radiation as compared to irradiation alone. The combined radiation and monogalactosyl diacylglycerol treatment showed a higher proportion of apoptosis and DNA damage in malignant pancreatic cells, as compared to either one alone [].

3.4.12. Moringa oleifera

Moringa oleifera is a fast-growing tree native to tropical and subtropical regions of South Asia. It is widely cultivated for its young seed, pods, roots, flowers, and leaves, used as vegetables and for traditional herbal medicine. It has antiproliferative and antimetastatic properties. Some studies suggest that it may cause adverse effects when consumed in large quantities. The supplementation with M. oleifera leaf extract is potentially toxic at levels exceeding 3000 mg/kg of BW, being safe at levels below 1000 mg/kg. It may interfere with prescription drugs affecting cytochrome P450. Hagoel et al. have shown that moringa administration combined with radiation therapy significantly inhibited human PC cell survival, induced apoptosis, and reduced the metastatic activity of these cells. Combined treatment also resulted in a decreased expression of Bcl-2, and down-regulation of the PARP-1 and the NF-κB-related proteins. Moringa also inhibited the growth of tumors generated by human PC cells in nude mice. The combination of moringa with radiation exhibits an additional inhibitory effect by overcoming the radioresistance of PC cells [].

3.4.13. Nexrutine®

Nexrutine is an extract consisting of a blend of several active protoberberine alkaloids derived from the bark of Phellodendron amurense []. It has been utilized in traditional Chinese medicine as a potent antidiarrheal and antiinflammatory agent. Gong et al., using multiple human PC cells, found that the combination treatment with nexrutine and gemcitabine resulted in significant alterations of proteins in the STAT3/NF-κB signaling axis, and growth inhibition in a synergistic manner [].

3.4.14. Ocoxin Oral Solution

Ocoxin oral solution comprises a mixture of several natural compounds, such as green tea extract; glycyrrhizic acid; vitamin C, B6, and B12; minerals; and amino acids. This nutritional supplement possesses immunomodulatory, anti-inflammatory, and antioxidant properties, as well as antitumor effects, either alone or in combination with irinotecan in liver metastases from colorectal cancer []. Hernandez-Unzueta et al. investigated the effect of ocoxin oral solution in an experimental PC model, and its influence in stroma-related chemoresistance to paclitaxel and gemcitabine. They showed that this solution enhances the cytotoxic effect of paclitaxel and gemcitabine, and ameliorates the chemoresistance in human PC cells. It also promoted the expression of the altered genes, and decreased pancreatic tumor development in vivo [].

3.4.15. Oplopanax horridus

Oplopanax horridus (devil’s club or devil’s walking stick) is a large understory shrub, endemic to the rainforests of the Pacific Northwest. The main chemical constituents of O. horridus are polyynes phenylpropanoids lignan glycosides, triterpenoids, sesquiterpenes, and volatile compounds []. The plant is used in a variety of ways, most commonly as an oral tea in traditional settings. Native American populations have used the plant as traditional medicine for conditions such as diabetes and rheumatoid arthritis. Its root and stem bark extract showed antiproliferation activity. Cheung et al. [] investigated the effects of devil’s club ethanol extract alone or in combination with cisplatin, gemcitabine, and paclitaxel on pancreatic endocrine HP62, and pancreatic ductal carcinoma PANC-1 and BxPC-3 cells. They found that devil’s club extract inhibited the proliferation of HP62, PANC-1, and BxPC-3 cells. Devil’s club combined with paclitaxel inhibited synergy on PANC-1 cells. An up-regulation of cytochrome C, claspin, cIAP-2, and HTRA2/Omi apoptosis-related markers in devil’s-club-treated HP62 and PANC-1 was also found. The extract acts through targeting the mitochondrial apoptosis pathway in the PC cells. In another study, Tai et al. [] found that PANC-1 3D spheroids were more resistant to killing by Oplopanax horridus extract, gemcitabine, and paclitaxel compared to 2D cells. Oplopanax horridus extract enhanced the antiproliferation activity of cisplatin and gemcitabine. The use of a 3D spheroid model for the screening of natural products can increase the efficiency in discovering in vivo bioactive compounds.

3.4.16. Paeonia suffruticosa

Paeonia suffruticosa has been used extensively in Chinese medicine. There are more than 1000 Chinese tree peony cultivars that have been selected for more than 2000 years. The root bark of Paeonia suffruticosa could inhibit the growth and metastasis of cancer, although the exact mechanism(s) of this inhibion are unknown. Liu et al. showed that the oral administration of Paeonia suffruticosa aqueous extracts, alone or in combination with gemcitabine, delayed tumor growth in a xenograft model by stimulating the endoplasmic-reticulum-related proteostasis stress, and inducing autophagy and cell apoptosis. This proteostasis impairment resulted in altered dynamics of the actin cytoskeleton, and cell cycle progression inhibition. It seems that reactive oxygen species generated by Paeonia suffruticosa may trigger mitophagy and, finally, cell apoptosis [].

3.4.17. Pao Pereira

Pao Pereira provides monoterpenoid indole alkaloid rich extracts and fractions used in clinical practice for the treatment of prostate cancer and AIDS. The extract of Pao Pereira, either alone or in combination with gemcitabine, induced dose-dependent apoptosis in all five tested PC cell lines. The combination with gemcitabine had a synergistic effect in the inhibition of cell growth. In an orthotopic pancreatic xenograft mouse model, Pao Pereira significantly suppressed tumor growth. Combined Pao Pereira and gemcitabine treatment further enhanced the tumor inhibitory effect compared to gemcitabine alone [].

3.4.18. Piperlongumine

Piperlongumine, a biologically active alkaloid/amide phytochemical extracted from long pepper, has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Rawat et al. showed that piperlongumine inhibits cell proliferation of INT-407 and HCT-116 cells, and increases the levels of intracellular reactive oxygen species. Moreover, P53, P21, BAX, and SMAD4 were up-regulated, whereas BCL2 and survivin were down-regulated []. The combination study confirmed the synergistic effect of piperlongumine with the chemotherapeutic agent paclitaxel.

3.4.19. Resveratrol

This natural polyphenol is a phytoalexin exhibiting very high antioxidant and antimicrobial potential, acting against many pathogens, including bacteria and fungi. Other effects, such as cardioprotective, phytoestrogenic, and neuroprotective, have also been reported. Moreover, it could inhibit the growth of many cancers both in vitro and in vivo. At doses less than 1 g/d, resveratrol does not appear to cause side-effects. At doses of 2.5 g/d or more, side-effects, such as nausea, vomiting, diarrhea, and liver dysfunction, could be observed. However, in long-term clinical trials, no significant side-effects were noticed. In fact, resveratrol has been found to be safe and well-tolerated at doses up to 5 g/day []. In an experimental study, Jiang et al. found that resveratrol suppressed the proliferation, and induced apoptosis in PC cells via the activation of AMP protein kinase. They also noticed that the silencing of the YES-activated protein by resveratrol enhanced the sensitivity of PC cells to gemcitabine [].

3.4.20. Rauwolfia vomitoria

Rauwolfia vomitoria is a plant species of the genus Rauvolfia. It is native in countries of Africa, China, Bangladesh, and Puerto Rico. The plant contains a number of compounds widely used in traditional medicine []. An extract of the roots is extensively used in patients with diarrhea, jaundice, and abdominal colic or fever, and also to reduce blood pressure. The plant contains a number of compounds with pharmaceutical action, including reserpine, reserpinine, deserpidine, ajmalicine, and ajmaline. Rauwolfia vomitoria contains 2,6-Dimethoxybenzoquinone, which is a benzoquinone with antiproliferative action against malignant cells. However, many parts of the tree are toxic and should be used with caution. Yu et al. showed that Rauwolfia vomitoria induced apoptosis in a concentration-dependent manner. The combined administration of Rauwolfia vomitoria and gemcitabine had a synergistic effect in inhibiting cell growth. Rauwolfia vomitoria also suppressed tumor growth and metastatic potential in an orthotopic PC mouse model [].

3.4.21. Thymoquinone

Nigella sativa L. represents a source of a number of bioactive compounds, including thymoquinone, α-pinene, p-cymene, and monoterpenes []. Thymoquinone represents the predominant bioactive ingredient of Nigella sativa. This chemical has been shown to have anti-cancer and chemo-sensitizing effects on PC. The potency of the combined administration of thymoquinone and gemcitabine in inducing apoptosis and preventing gemcitabine-insensitivity in PC cells was recently investigated. It was found that thymoquinone pre-treatment following gemcitabine treatment increased the PC cell apoptosis, and inhibited tumor growth both in vitro and in vivo, by affecting multiple molecular signaling targets. The combination also induced down-regulation of anti-apoptotic, and up-regulation and activation of pro-apoptotic molecules []. Therefore, thymoquinone pretreatment can enhance the anti-cancer activity of gemcitabine.

3.4.22. Triptolide

Triptolide is an organic heteroheptacyclic compound, an epoxide, a gamma-lactam, and a diterpenoid. The chemical structure of Triptolide is shown in Figure 5.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g005.jpg

Chemical Structure of Triptolide (PubChem 12966367).

Yang et al. analyzed the combined cytotoxic effect of triptolide and hydroxycamptothecin on the PC cell line PANC-1. They showed that the cytotoxic result of a combined therapy was superior to that of triptolide or hydroxycamptothecin alone. They also suggested that the activation of caspase-9/caspase-3, and inhibition of the NF-κB signaling pathway were the mechanisms responsible for the synergistic cytotoxic effect of this combination therapy []. Combined triptolide and hydroxycamptothecin therapy in patients with PC should be tested.

3.5. Experimental Studies Using Plants as Unique Agents against Pancreatic Cancer Cell Lines and Xenografts

The volume of experimental studies published so far includes 68 products of herbals or plants. Almost all experimental studies showed beneficial effects, strongly suggesting that these plants or plant derivatives should be tested in large clinical trials. In order to facilitate the reader to easily find out the details concerning a certain plant or plant extract, the names and mode of action of the natural products and herbals described in this review are shown in Table 2 (in alphabetical order), and analyzed subsequently.

Table 2

Names, country of origin, and mechanisms of anticancer effects of plant extracts investigated against pancreatic cancer cell lines.

No. Plant Name Country
of Origin
Mechanism of Action Reference
1 Achyranthes aspera India Suppression of the transcription of metalloproteases, and angiogenic factors. []
2 Alpinia officinarum Southeast Asia Suppression of cell proliferation, and induction of cell cycle arrest. []
3 Amoora rohituka Bangladesh Induction of apoptosis in PC HPAF-II cells, inhibition of K-ras activity, and suppression of cell proliferation. []
4 Ancistrocladaceae Africa/
Asia
Cytotoxicity against human PC cells under nutrition-deprived conditions. Inhibition of colony formation of PC cells. []
5 Apigenin Global distribution Induction of the death of pancreatic cell, arrest of the cell proliferation, and induction of apoptosis through mitochondrial pathway. [,]
6 Asteracea and Lamiaceae Global distribution Asteraceae extracts induced cytotoxicity, and inhibited cell transformation. []
7 Bitter melon juice Global distribution Activation of caspases, decreased signaling and X-linked inhibitor of apoptosis protein levels.
Activation of adenosine monophosphate-activated protein kinase.
[]
8 BRM270 Global distribution Induction of apoptosis in CD44+ cells, inhibition of metastasis traits in CD44+ PDAC. [,]
9 Boesenbergia rotunda China/South-East Asia Cytotoxic action against human PC cells under nutrition-deprived conditions. []
10 Boswellia sacra gum resins China Reduction of the viability, and increased death after treatment with fractions III and IV of human PC cells. Anti-proliferative and pro-apoptotic activities in the heterotopic xenograft mouse model. []
11 Brucea javanica Sri Lanka, India,
China,
Australia
Accentuation of the expression of caspase 9 and 3 in Capan-2 cells. Induction of apoptosis in Capan-2 cells through mitochondrial pathway. [,]
12 Cannabinoids Global distribution Antiproliferative and proapoptotic effects in vitro mediated through various pathways. []
13 Citrus unshiu Peel Japan Inhibition of growth of PC cells through induction of caspase-3 cleavage. It blocked the migration of the cancer cells through activation of intracellular signaling pathways. []
14 Cloves (Syzygium aromaticum) Indonesia Inhibition of tumor growth in HT-29 xenograft mice model through induction of cell autophagy. []
15 Cocoa polyphenol Global distribution Decreased the NF-κB transcriptional activity of premalignant and malignant Kras-activated pancreatic ductal epithelial cells. []
16 Coix ignaling-jobi seed emulsion China Inhibition of NFkB signaling pathway, and inhibition of protein kinase C activity. []
17 Crocus sativus Mediterranean, Asia,
Iran
Induction of apoptosis and cell cycle arrest, decreased cell viability. []
18 Cryptotanshinone China Inhibition of proliferation, and induction of cell apoptosis and cycle arrest in PC cells.
Up-regulation of caspase-3 and -9, and poly ADP ribose polymerase, and down-regulation of c-myc, ignaling, and cyclin D1.
[,]
19 CucurbitacinE China Inhibition of STAT3 phosphorylation, and up-regulation of p53 expression. []
20 Cucurmosin America Induction of apoptosis, inhibition of cell growth, and inhibition of P13K/Akt/mTOR signaling pathway. []
21 Dandelion root extract China and America Induction of selective apoptosis, as well as collapse of the mitochondrial membrane potential, leading to prodeath autophagy. []
22 Degalactoti-gonin
Solanum nigrum
Asia, America,
Australia, South Africa
Inhibition of EGF-induced proliferation, and migration and down-regulation of cuclin D1. []
23 Diterpene quinones Global distribution KIS37 (cryptotanshinone): Inhibition of KRAS-activated PC cell lines, suppression of KRAS protein, and phosphorylation of Rb and cyclin D1, and PC cell growth in xenografts. []
24 Elemene Global distribution Up-regulation of tumor expression of P53, and down-regulation of Bcl-2 expression. []
25 Ellagic acid Global distribution Inhibition of angiogenesis and metastasis in tumor tissues, NF-κB pathway, and COX-2; up-regulation of E-cadherin; and down-regulation of Vimentin. [,]
26 Emodin Rheum palmatum L China Down-regulation of NF-κB DNA-binding activity, and up-regulation of cleaved caspase-3. []
27 Eryngium billardieri Global distribution Overexpression of Bax, and underexpression of cyclin D1 on PANC-1 cancer cell lines [,]
28 Eucalyptus Australia Induction of caspase 3/7-mediated apoptosis [,,]
29 Ferula Hezarlaleh-zarica Iran Anti-proliferative action on PANC-1 cells. []
30 Gallic acid Global distribution Down-regulation of Bcl-2, depolarization of mitochondrial membrane. Reduction of the formation of reactive oxygen species []
31 Garlic Global distribution Regulation of the JNK protein levels.
Inhibition of all PC cell lines proliferation
[,]
32 Gedunin India Induced of anti-metastatic effect through inhibition of sonic hedgehog signaling []
33 Ginger Extract Asia, Africa, America Induction of ROS-mediated autosis. []
34 Ginkgolic acid Asia Down-regulation of the expression of enzymes involved in lipogenesis, and activation of protein kinase signaling. []
35 Grape proan-thocyanidin Global distribution Reduction of antiapoptotic proteins, and increased expression of Bax. []
36 Graviola Tropical countries Inhibition of multiple signaling pathways regulating metabolism, survival, and metastatic potential of PC cells. []
37 Green tea extract Global distribution Inhibition of molecular chaperones heat-shock protein 90, and heat-shock protein 27, and inhibition of p53 and Akt. []
38 Helicteres hirsuta Lour Vietnam Cambodia, Indonesia, Thailand In vitro activity against various PC cell lines. []
39 Inula helenium Eurasia Inhibition of the phosphorylation of the signal transducer, and activator of transcription (stat)3/akt pathway. []
40 Lonicera japonica China,
Japan
Inhibition of BxPC-3 and PANC-1 cell growth. []
41 Lupeol America,
Japan, China, Africa
Induction of apoptosis and cell cycle arrest. []
42 Mangifera indica India, Brazil,
Africa
Potent cytotoxicity against human PC cells under nutrition-deprived condition. []
43 Mexican lime Mexico Increased expression of Bax, Bcl-2, casapase-3, and p53, and inhibition of proliferation. []
44 Moringa Oleifera India Inhibition of NF-κB signaling pathway, and increase of the efficacy of chemotherapy with cisplatin in human PCcells. []
45 Matrine China Inhibition of cell viability by down-regulation of the expression of PCNA, induction of apoptosis, and increase of activation of caspases-8, -3, -9. []
46 Naringenin and Hesperetin Japan, Spain, China, Korea, S. Africa, America Inhibition of the phosphorylation of focal adhesion kinase and p38 signaling pathway. []
47 Nerium oleander China, Russia Potent antitumor activity, through down-regulation of PI3k/Akt and mTOR pathways. []
48 Nimbolide India Inhibition of proliferation and metastasis via mitochondrial-mediated apoptotic cell death. []
49 Obacunone Global distribution Induction of apoptosis (activation of caspase-9 and -3, up-regulation of p53, and down-regulation of Bcl2 and NFκB and Cox-2). []
50 Ocimum sanctum India Up-regulation of genes inhibiting metastasis and inducing apoptosis, and down-regulation of genes promoting survival []
51 Oleuropein Mediterra-nean, China,
Asia
Decrease of the viability of the PC cells. []
52 Olive Biophenols Global distribution Induction of apoptosis of
MIA PaCa-2 cells.
[]
53 Oridonin China Induction of apoptosis, and inhibition of BxPC-3 cells through regulation of the expression of miRNAs. [,]
54 Paeonia lactiflora Asia, China, Siberia Inhibition of PC growth by up-regulation of HTRA3. []
55 Palm oil phenolics Tropics Induction of apoptosis associated with decrease in survivin and Bcl-XL expression. []
56 Paramignya trimera and Phyllanthus amarus India Strong cytotoxic capacity. [,,]
57 Plumbagin Organic compound Induction of apoptosis in PC cells through the mitochondria-related pathway []
58 Pomegranate extract India,
America
Inhibitory effect through yet unidentified phytochemicals. []
59 Pulsatilla koreana Korea Increased caspase-3, and decreased of Bcl-2 expression.
Decreased expression of major factors of angiogenesis.
[]
60 Quercetin Global distribution Sensitized resistant cells to daunorubicin. [,]
61 Radix Scutellariae Asian countries Induction of apoptosis and autophagy in PC cell lines through PI3K/Akt/mTOR signaling pathway. [,]
62 Rhazya stricta South Asia, Middle East Reduction in cell viability with dose-dependent manner, and decrease in mRNA expression in PANC-1 and AsPC-1 PC cells. []
63 Salvia chinensis China Potent cytotoxicity in the MiapaCa-2 human PC cells. []
64 Sedum sarmentosum Bunge China Increased cellular apoptosis. Induction of p53 expression, and inhibition of epithelial-mesenchymal transition. Down-regulation of the proliferation-related hedgehog signaling pathway. []
65 Sugiol Taiwan Induction of apoptosis, and up-regulation of the expression of Bax, with down-regulation of Bcl-2 expression. []
66 TEOA China Inhibition of the proliferation and migration of PC cells, and induction of autophagic cell death in PC cells. []
67 Toosendanin China It inhibits PC cell growth by blocking Akt/mTOR signaling pathway. [,]
68 Tripterigium wilfordii China Triptolide-plasminogen activator urokinase could represent a novel target for patients with PC. []
69 Valtrate China Increased expression of Bax; suppression of Bcl-2, c-Myc, and Cyclin B1; and inhibition of the transcriptional activity of Stat3. []
70 Xanthohumol Europe, Asia, South America Inhibition of phosphorylation of signal transducer, activation of the transcription 3, and expression of its downstream targeted genes. []
71 Xao tam phan Vietnam Antioxidant and anti-proliferative activities. []
72 Xylaria psidii It grows on dead wood Cell cycle arrest and
loss of mitochondrial membrane potential.
[]
73 Wikstroemia indica China, Viet-nam, India, Philippines Cytotoxicity in the nutrient-deprived medium. []
74 Ziziphus nummularia Saudi
Arabia
Inhibition of angiogenesis, reduction of VEGF and nitric oxide levels. Down-regulation of ERK1/2 and NF-κB signaling pathways. []

3.5.1. Achyranthes Aspera

Achyranthes aspera is a plant used as an anti-cancer agent in traditional medicine in India. Chemical investigation of the seeds of this plant resulted in isolation and identification of saponin A (as D-glucuronic acid) and saponin B (as β-D-galactopyranosyl ester of D-glucuronic acid). Certain other constituents were also isolated, including oleanolic acid, amino acids, and hentriacontane. The seeds also contain 10-tricosanone, 10-octacosanone, and 4-tritriacontanone []. The plant has been shown to exhibit time- and dose-dependent cytotoxicity on PC cells. It also selectively suppresses the transcription of metalloproteases, inhibitors of MMPs, and angiogenic factors [].

3.5.2. Alpinia officinarum

Alpinia officinarum is a plant in the ginger family, cultivated in Southeast Asia. The rhizomes of the plant have been used in curries and perfumes. It contains high amounts of the flavonol galangin. Dong et al. showed that these diarylheptanoids contained in Alpinia officinarum suppressed cell proliferation, and induced the cell cycle arrest of PC cells [].

3.5.3. Amoora rohituka

Amoora rohituka is a plant found in many districts of Bangladesh. The species of the plant contain several triterpenoids, including limonoids, steroids, an alkaloid, a chromone (noreugenin), three flavonoid glycosides, and straight-chain aliphatic compounds []. The extracts of this plant have been studied for their anti-inflammatory, antibacterial, and anticancer properties. Rabi et al. found that Aphanin, one of the isolated novel triterpenoid compounds, exhibited antiproliferative effects, caused G0-G1 cell cycle arrest, inhibited K-Ras G12D mutant activity, and induced apoptosis in PC HPAF-II cells [].

3.5.4. (Ancistrocladaceae) liana

Ancistrocladaceae is the name of flowering plants growing in the tropics. The active ingredient is michellamine B, an isoquinoline alkaloid that can be found in the mature leaves. A number of other alkaloids have also been isolated that display strong cytotoxic activities against PC cell lines in nutrient-deprived media, without toxicity in normal, nutrient-rich conditions []. Li et al., using two newly discovered naphthylisoquinoline dimers, along with the known dimer jozimine A2, showed that they have strong cytotoxic activities against human PC cells under nutrition-deprived conditions [].

3.5.5. Apigenin

Apigenin (4′,5,7-trihydroxyflavone), a natural product found in many fruits and vegetables, mainly in the flowers of chamomile plants, belongs to the flavone class. Johnson et al. investigated the inhibitory effects of the citrus fruit bioactive compounds, namely flavonoids, limonoids, phenolic acids, and ascorbic acid, on human PC cells. Apigenin showed strong anticancer activity through the induction of pancreatic cell death arrest of the cell cycle at the G2 /M phase, and activation of the mitochondrial pathway of apoptosis. Apigenin could also up-regulate the expression of a number of cytokine genes in BxPC-3 cells []. Moreover, apigenin has been shown to sensitize PC cells to chemotherapy by affecting a number of molecular pathways [].

3.5.6. Asteraceae and Lamiaceae

The Lamiaceae or Labiatae is a family of aromatic flowering plants that includes herbs such as basil, mentha, rosemary, sage, savory, marjoram, oregano, thyme, and lavender. These plants contain phenolic compounds, especially flavonoids []. The effects of different Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts against human PC cells were tested. In an experimental study, Asteraceae extracts showed significant antitumor activity by inducing cytotoxicity, and inhibiting cell transformation [].

3.5.7. Bitter Melon Juice

Bitter melon juice contains a large number of phytochemicals, flavonoids, triterpenes, saponins, ascorbic acid, steroids, proteins, and polysaccharides. Kaur et al. showed that bitter melon juice decreased the viability of PC cell lines by inducing apoptotic death. At the molecular level, it caused caspase activation, altered Bcl-2 expression, and decreased 22-signaling and X-linked inhibitor of apoptosis protein levels. The oral administration of bitter melon juice in mice inhibited MiaPaCa-2 tumor xenograft growth by 60% without side-effects [].

3.5.8. BRM270

BRM270 is a natural compound used in Asian traditional medicine, made from seven herbal plant extracts (Saururus chinensis, Citrus unshiu Markovich, Aloe vera, Arnebia euchroma, Portulaca oleracea, Prunella vulgaris var. lilacina, and Scutellaria bacicalensis). BRM270 is considered to be the most important phytochemical extract that possesses anticancer properties, although its low bioavailability makes the administration of high dosages necessary in order to obtain positive results. Huynh et al. investigated the effect of BRM270 on the isolated surface market CD44 positive PC cells. They showed that BRM270 induced apoptosis in these cells, and inhibited metastasis traits via the sonic hedgehog signaling pathway. Moreover, in an in vivo experiment, tumor growth derived from CD44+ PDAC was suppressed []. It seems that the administration of this phytochemical extract selectively targeting CD44+ PDAC cells in tumors might be an effective approach against pancreatic tumorigenesis. BRM270 also has the advantage of being effective in PC cells resistant to paclitaxel and gefitinib [].

3.5.9. Boesenbergia pandurata

Boesenbergia rotunda is a medicinal herb growing mainly in China and Southeast Asia. Nearly a hundred compounds were isolated and elucidated, includung flavonoid and chalcone derivatives, esters, kawains, terpenes, and terpenoids. It is specifically used as a spice, or as a flavoring agent, or in traditional medicine in patients with liver cirrhosis. Its rhizomes have been used in various disorders, including oral eczema, ulcers, and dry mouth. Its extracts improve candidiasis, especially in patients with HIV infection, dysentery, and abdominal pain. A recently described observation, according to which human PC cell lines exhibit a significant tolerance to nutrition starvation agents that could inhibit the survival of cancer cells under low nutrient conditions, might be a very interesting novel strategy in the treatment of PC. In this regard, Nguyen et al. tested an extract of the rhizomes of Boesenbergia pandurata against human PC cells under nutrient-deprived conditions. They showed that the isolates isopanduratin A1 and nicolaioidesin C exhibited the strongest cytotoxicity against human PC cells under nutrition-deprived conditions [].

3.5.10. Boswellia sacra Gum Resins

Gum resins from Boswellia species have been used in Ayurvedic and Chinese medicine in a number of clinical applications, including for malignant disorders. Ni et al. showed that crude essential oil prepared from hydrodistillation of Boswellia sacra gum resins could reduce viability, and increase cancer cell death. Human PC cells showed reduced viability, and increased death after treatment with fractions III and IV. Boswellia sacra essential oil Fraction IV also exhibited anticancer activities against PC in the heterotopic xenograft mouse model []. Although the responsible chemical compounds were not identified, Boswellia sacra gum resins are promising agents for the treatment of PC.

3.5.11. Bruceine D

Brucea javanica is a shrub belonging to the family Simaroubaceae, growing naturally in a number of countries, including Sri Lanka and India to China, Malesia, New Guinea, and Australia. The fruit Brucea javanica contains quassinoid compounds that have anticancer and antiparasitic properties. Brucea javanica oil emulsion has been employed as adjunctive therapy for the treatment of various cancers. The mechanisms of antitumor activity may include inhibition of DNA polymerase activity, arrest of the tumor cell division cycle, disruption of the cellular energy metabolism, and depression of the expression of vascular endothelial growth factor. Liu et al. showed that bruceine D has a potent cytotoxic effect on PC cell lines. Bruceine D induces cytotoxicity in Capan-2 cells via the induction of cellular apoptosis involving the mitochondrial pathway. The antiproliferative effects of bruceine D were comparable to those exhibited by camptothecin and gemcitabine. Finally, the expression of both caspase 9 and caspase 3 in BD-treated Capan-2 cells was accentuated []. Brucea javanica oil emulsion can effectively reverse the multidrug resistance of tumor cells, thus increasing the sensitivity of cancer cells to chemotherapy and radiotherapy. Yang et al. found that the combination of Brucea javanica with gemcitabine in a PC patient-derived orthotopic xenograft mouse model resulted in a reduced tumor growth rate, and increased apoptosis compared to the vehicle control and gemcitabine alone, as well as increased survival. Taken together, all of these results unequivocally indicate that this plant has a therapeutic potential for PC [].

3.5.12. Cannabinoids

Cannabinoids are chemicals found in cannabis. Phytocannabinoid tetrahydrocannabinol represents the primary psychoactive compound of cannabis. There are at least 113 different cannabinoids isolated from cannabis, exhibiting varied therapeutic effects, including improvement of the outcome of cancer patients. In vitro studies have shown that cannabidiol has antiproliferative and proapoptotic effects mediated through cannabinoid receptor-1 and -2, and G-protein-coupled receptor 55 pathways. In vitro studies with cannabidiol, tetrahydrocannabinol, and synthetic derivatives also demonstrated tumor growth-inhibiting effects. The combination of cannabidiol cannabidiol/synthetic cannabinoid receptor ligands and chemotherapy in xenografts showed positive results [].

3.5.13. Citrus Unshiu Peel

Citrus Unshiu, 1 of the more than 900 citrus species known today, is a seedless, easy to peel tangerine, coming from the Japanese town, Satsuma. The chemical constituents of the citrus unshiu flower include γ-terpinene (24.7%), 2-β-pinene (16.6%), 1-methyl-2-isopropylbenzene (11.5%), L-limonene (5.7%), β-ocimene (5.6%), and α-pinene (4.7%) []. Lee et al. prepared a fermented extract of Citrus unshiu peel from the byproduct after juice processing, and examined its anticancer effects on PC cells. They found that fermented Citrus unshiu peel mainly consists of aboriginal compounds (narirutin and hesperidin), as well as newly generated compounds (naringenin and hesperetin). Treatment with fermented Citrus unshiu peel inhibited the growth of human PC cells through the induction of caspase-3 cleavage both in vitro and in vivo. Moreover, Citrus unshiu peel also blocked the migration of the PC cells through the activation of intracellular signaling pathways []. Naringenin and hesperetin were the unique modules related to its anticancer effect. In in vivo xenograft models, fermented Citrus unshiu peel also showed anticancer effects, suggesting that this product might be an effective anticancer drug for PC with no side-effects.

3.5.14. Cloves (Syzygium aromaticum)

Cloves are the aromatic flower buds of a tree in the family Myrtaceae, Syzygium aromaticum. They are native in Indonesia, used as a spice. Clove oil containing eugenol could be effective in pain of various origins, although no supporting data exist. Again, inconclusive results were obtained from studies investigating its efficacy in fever and diabetes. Therefore, the use of cloves for any medicinal purpose has not been approved by the FDA of the USA. Some side-effects have also been described in patients suffering from liver, and blood clotting and immune system disorders. However, in the study of Li et al., the aqueous extract of cloves inhibited cancer cell growth, and diminished the colony formation on several cancer cell lines, including human PC cells. An in vivo study revealed that aqueous extract of cloves inhibited the tumor growth in a HT-29 xenograft mice model by inducing cell autophagy [].

3.5.15. Cocoa Polyphenol

Epicatechin is the major polyphenol contained in cocoa. Siddique et al. showed that treatment with cocoa polyphenol and epicatechin decreased the NF-κB transcriptional activity of premalignant and malignant Kras-activated pancreatic ductal epithelial cells, concurrently decreasing their proliferation, the guanosine triphosphate-bound Ras protein, and the Akt phosphorylation []. Furthermore, the oral administration of 25 mg/kg of cocoa polyphenol inhibited the growth of Kras-PDE cell-originated tumors in a xenograft mouse model.

3.5.16. Cordyceps Militaris

Cordyceps militaris is a species of fungus in the family Cordycipitaceae. It represents an entomopathogenic fungus, which is widely used in traditional Chinese medicine as a general booster for the nervous system, metabolism, and immunity. A variety of substances, including saccharides, nucleosides, mannitol, and sterols, have been isolated from this fungus. The biological activity of Condyceps militaris is attributed to the saccharide and nucleoside contents. In a recently published study, Li et al. demonstrated that Cordycepin inhibits PC growth in vitro and in vivo via targeting FGFR2, and blocking ERK signaling [].

3.5.17. Crocus Sativus

Crocin, the main component of Crocus sativus, is one of the few water soluble carotenoids found in nature []. In an experimental study, it was shown that Crocin induced apoptosis and cell cycle arrest of BxPC-3 human PC cell lines, and decreased cell viability. The mechanism of action seems to be related with the induction of apoptosis of the malignant cells [].

3.5.18. Cryptotanshinone

Salvia miltiorrhiza is a perennial plant of the genus Salvia. The chemical compositions of this herb are hydrophilic phenolic compounds and lipid-soluble diterpenoid compounds that are responsible for its pharmacological activities. The tanshinones in Salvia miltiorrhiza are diterpenoid quinones, which can be classified into two series, one is the phenanthro [1,2-b] furan-10,11-diones; and the other is the phenanthrol [3,2-b] furan-7, 11-diones. Alone or combined with other herbal medicines, Salvia miltiorrhiza has been used in China as a treatment for cardiovascular and cerebrovascular diseases, although a number of meta-analyses suggest that the effects of the plant are inconclusive. Adverse effects may include allergic reactions, dizziness, headache, gastrointestinal complaints, and bleeding in patients taking warfarin. Danshen may have anti-hypertensive and anti-platelet aggregation effects, and may enhance endogenous anti-oxidative enzyme activities. Cryptotanshinone, one of the active constituents of Salvia miltiorrhiza, has been shown to exhibit significant antitumor effects in several cancer cells []. Ge et al. demonstrated that cryptotanshinone inhibited proliferation, and induced cell apoptosis and cell cycle arrest in PC cells. In addition, cryptotanshinone decreased the activities of signal transducer, as well as several upstream regulatory signaling pathways [].

3.5.19. Cucurbitacin E

Cucurbitacin E belongs to a triterpenoid family, isolated from plants, and shows antiproliferative activity on various cancer cells. Cucurbitacin E inhibited the growth of PANC-1 cells and apoptosis, inhibited STAT3 phosphorylation, and up-regulated p53 expression [].

3.5.20. Cucurmosin

The structure of Cucurmosin has been proved to be one of the type 1 ribosome-inactivating proteins. Xie et al. established an NOD-SCID mice orthotopic transplantation model, and estimated the proliferation inhibition effect of Cucurmosin in SW-1990 cells in vivo. Cucurmosin inhibited the proliferation of PC cells, and induced apoptosis in a dose- and time-dependent manner. In the NOD-SCID mice models, the tumor proliferation inhibition rates were increased compared with controls. Cucurmosin inhibited the examined proteins in the PI3K/Akt/mTOR signaling pathway, and induced active fragments of Caspase 3 and 9 []. Cucurmosin can inhibit the growth and induce apoptosis of the human PC cell line SW-1990 both in vitro and in vivo.

3.5.21. Dandelion root Extract

Dandelion root has been used in traditional Chinese and Native American medicine in various liver and gastric disorders. The therapeutic properties of Dandelion are attributed to its bioactive chemical components, including chicoric acid, taraxasterol, chlorogenic acid, and sesquiterpene lactones []. In an experimental study, Dandelion root extract induced selective apoptosis, as well as collapse of the mitochondrial membrane potential, leading to prodeath autophagy [].

3.5.22. Degalactotigonin

Solanum nigrum is a species in the genus Solanum, native to Eurasia, and introduced in America, Australasia, and South Africa. Solanum nigrum is a widely used plant in oriental medicine, considered to have anticancer, antioxidant, anti-inflammatory, hepatoprotective, diuretic, and antipyretic properties. However, ripe berries can cause symptoms such as fever, sweating, vomiting, abdominal pain, diarrhea, confusion, and drowsiness. Death after ingesting large amounts of the plant has been observed. Degalactotigonin solasodine a steroidal glycoside isolated from Solanum nigrum which showed cytotoxicity, and induced apoptosis in PC cell lines. It also inhibited EGF-induced proliferation and migration, and induced down-regulation of cyclin D1. Furthemore, it inhibited EGF-induced phosphorylation of EGFR, as well as activation of EGFR downstream signaling molecules [].

3.5.23. Diterpene 25 Signaling

Pyruvate dehydrogenase kinase 4 expression is up-regulated in various cancer tissues, being a suitable target for cancer therapy given its ability to shift glucose metabolism. Tambe et al. identified natural diterpene 25 signaling (KIS compounds) that inhibits pyruvate dehydrogenase kinase 4. They showed that KIS37 (cryptotanshinone) inhibited KRAS-activated human PC cell lines, and suppressed KRAS protein expression. Furthermore, KIS37 suppressed phosphorylation of Rb and cyclin D1 proteins, as well as the expression of cancer stem cell markers. KIS37 also suppressed PC cell growth in both subcutaneous xenograft and orthotopic pancreatic tumor models []. Therefore, KIS37 should be considered as a novel therapeutic strategy for targeting PDK4 in KRAS-activated PC.

3.5.24. Elemene

Elemenes are a group of chemical compounds found in a variety of plants. Chemically, they are structural isomers of each other, and are classified as sesquiterpenes. They could be found in a variety of medical plants. Bearing in mind the antiproliferative effects of this compound, Long et al. investigated different doses of elemene in mice undergoing subcutaneous xenograft with BxPC-3 PC cells. In the in vitro experiment, a significant antiproliferative effect of BxPC-3 and Panc-1 cells was observed. In the in vivo BxPC-3 xenografts, elemene decreased the tumor size, up-regulated the expression of P53, and down-regulated the expression of Bcl-2 in the tumor []. The mechanisms of action against PC are related to down-regulation of the expression of Bcl-2, and up-regulation of the expression of P53.

3.5.25. Ellagic acid

Ellagic acid is a natural polyphenol antioxidant found in a number of plants and fruits. This chemical substance is considered to be a dietary supplement with antineoplastic characteristics. However, Ellagic acid has been characterized by the USA FDA as a “fake cancer cure’”. It has been suggested that urolithin A, microflora metabolites of dietary ellagic acid derivatives, might have anticancer effects. Zhao et al. showed that treatment of PANC-1 xenografted mice with Ellagic acid resulted in a significant inhibition in tumor growth; suppression of cell proliferation and caspase-3 activation; induction of PARP cleavage; inhibition of the expression of Bcl-2, cyclin D1, CDK2, and CDK6; and induction of the expression of Bax in tumor tissues. Other effects included the inhibition of angiogenesis and metastasis in tumor tissues []. In a more recent study, Cheng et al. found that Ellagic acid significantly inhibited human PC PANC-1 cell growth, cell repairing activity, and cell migration and invasion. On the other hand, treatment of PANC-1 xenografted mice with Ellagic acid resulted in a significant inhibition in tumor growth, and prolongation of the mice survival rate. []. The use of Ellagic acid would be beneficial for the management of PC.

3.5.26. Emodin

Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone), a Chinese medicinal herb with antineoplastic action, represents the active constituent isolated from the root of Rheum palmatum L. In a study aiming to investigate its antineoplastic action, Liu et al. noticed that emodin induced significant growth inhibition and apoptosis in the PC cell line SW1990 compared to that of control, concurrently suppressing the migration and invasion of SW1990 cells. Emodin down-regulated the NF-κB DNA-binding activity in SW1990 cells, and up-regulated the expression of caspase-3. In addition, the oral administration of emodin decreased tumor weight and metastasis [].

3.5.27. Eryngium billardieri

Eryngium represents a genus of flowering plants belonging to the family Apiaceae, with a global distribution. Eryngium contains several chemical constituents, including sesquiterpenes and monoterpenes as the main components, as well as aldehydes, coumarins, sitosterols, and sugars. They are annual and perennial herbs with spiny leaves. Some species are native to rocky and coastal areas, but the majority of them are grassland plants. Many species of Eryngium have been used in food and medicine against diabetes mellitus, and as an antiinflammatory agent []. Roshanravan et al. have shown that Eryngium billardieri extracts had cytotoxic effects on PANC-1 cancer cell lines, and induced apoptosis []. Moreover, treatment of cancer cells with dichloromethane and n-hexane extracts of Eryngium billardieri induced the overexpression of Bax and underexpression of cyclin D1.

3.5.28. Eucalyptus

Eucalyptus is a genus of over seven hundred species of flowering trees, shrubs, or mallees in the myrtle family commonly known as eucalypts. Although eucalyptus mainly grows in Australia, other species are now distributed globally. Being a natural insecticide, it can indirectly reduce the risk of malaria. Eucalyptus oils have been used in the pharmaceutical and cosmetics industries for multiple purposes. It has been used for the treatment of flu, fever, muscular aches, sores, pains of various origin, and inflammation. Eucalypts have been linked with cytotoxic and anticancer properties, although little scientific evidence exists []. Bhuyan et al. assessed the anticancer properties of aqueous and ethanolic extracts of four Eucalyptus species, and found these exctracts inhibited the growth of PC cells by more than 80% at 100μg/mL. Caspase 3/7-mediated apoptosis and morphological changes of cells were also witnessed in MIA PaCa-2 cells []. In a subsequent study [], the same group of investigators found that Angophora floribunda extract exerted a greater cell growth inhibition followed by A. hispida in MIA PC-2 cells.

3.5.29. Ferula Hezarlalehzarica

The genus Ferula comprises more than 170 species worldwide, of which 30 grow in Iran. These plants have been used traditionally for treating skin infections and stomach disorders. So far, there is a lack of phytochemical investigations of this plant. Alilou et al. isolated and evaluated 18 compounds, and found that the dichloromethane extract of the roots of Ferula hezarlalehzarica is a rich source of bioactive compounds for targeting PANC-1 cells [].

3.5.30. Gallic acid

In a relevant study, a grape seed procyanidin extract significantly inhibited cell proliferation, and increased apoptosis in PC cells through down-regulation of the antiapoptotic protein Bcl-2, depolarization of the mitochondrial membrane, and reduction of the formation of reactive oxygen species. Gallic acid had the highest antiproliferative and proapoptotic activity [].

3.5.31. Garlic

Garlic (Allium sativum) represents a species in the onion genus, Allium. An inverse association between garlic intake and gastric cancer was previously suggested. A number of side-effects, including gastrointestinal discomfort, sweating, dizziness, allergic reactions, bleeding, menstrual irregularities, and bad breath (halitosis), have been described. Wang et al. investigated a novel garlic active component (S-propargyl-L-cysteine), and showed that this substance reduced cell viability and colony formation, inhibited cell proliferation, and induced G2/M phase cell cycle arrest and apoptosis in human PC cells. It also inhibited tumor growth in Panc-1 xenografts by regulating the JNK protein levels []. Lan et al. [] observed morphologic changes of PC cells under transmission electron microscopy after treatment with garlic oil for 24 h. In the higher garlic oil concentrations, an earlier change of the apoptotic tendency was detected.

3.5.32. Gedunin (Azadirachta indica)

Gedunin is a tetranortriterpenoid isolated from the Indian neem tree Azadirachta indica. It has been used for the treatment of malaria and other infectious diseases in traditional Indian medicine. In addition, gedunin has demonstrated antiproliferative activity against various cancer cell lines. Subramani et al. assessed the anti-metastatic potential of gedunin on PC cells using matrigel invasion, cratch, and soft agar colony formation assays. They found that gedunin treatment was highly effective in inducing the apoptosis of PC cells. Furthermore, gedunin inhibited metastasis of PC cells by decreasing their invasive, migratory, and colony formation capabilities [].

3.5.33. Ginger Extract

Ginger is a plant native to warmer parts of Asia, but now is growing also in parts of South American and Africa. It is likely safe when taken appropriately, although it can cause mild side-effects, including heartburn, diarrhea, abdominal discomfort, and extra menstrual bleeding. Ginger spice comes from the roots of the plant. The extract of ginger and its major pungent components have an anti-proliferative effect on several tumor cell lines. Akimoto et al. demonstrated that the ginger ethanol-extracts suppressed cell cycle progression, and increased the death of human PC cell lines by inducing autosis, a form of cell death. Daily intraperitoneal administration of the extract prolonged survival in a peritoneal dissemination model, and suppressed tumor growth in an orthotopic model of PC [].

3.5.34. Ginkgolic Acid

Ginkgolic acid is a botanical drug extracted from the seed coat of Ginkgo biloba L., harboring anti-tumor effects. It has been used for centures in China and in Europe (Germany) some decades ago, in the treatment of Alzheimer’s disease. However, Ginkgo biloba leaf extracts may have undesirable effects in patients taking anticoagulants. Other side-effects include nausea, vomiting, diarrhea, headache, dizziness, and heart palpitations. It should be avoided during lactation. Ma et al. showed that Ginkgo biloba leaf extracts reduced the viability of cancer cells without toxic effects on normal cells. Ginkgo biloba leaf extracts also impaired colony formation, migration, and invasion ability, and increased apoptosis of cancer cells through the activation of AMP-activated protein kinase signaling and down-regulation of the expression of key enzymes involved in lipogenesis [].

3.5.35. Grape Proanthocyanidin

It has been found that in vitro treatment of human PC cells with proanthocyanidins from grape seeds resulted in a significant reduction in the cell viability, as well as a significant increase of G2/M phase arrest, induction of apoptosis, decrease in the levels of Bcl-2 and Bcl-xl, and increase in the levels of Bax and activated caspase-3. On the other hand, in vivo experiments using diet supplementation with proanthocyanidins from grape seeds on Miapaca-2 pancreatic tumor xenografts grown subcutaneously in athymic nude mice resulted in reduction of tumor growth, increased expression of Bax, reduction of anti-apoptotic proteins, and activation of caspase-3-positive cells [].

3.5.36. Graviola

The tropical tree Annona Muricata, commonly known as graviola, has been shown to have some anticancer properties. More than 200 chemical compounds have been identified and isolated from this plant; the most important being alkaloids, phenols, and acetogenins []. Torres et al. showed that graviola extract induced necrosis of PC cells by inhibiting cellular metabolism, and down-regulating the expression of NFκB []. In vitro functional assays confirmed the inhibition of growth of PC cells, suggesting that graviola extract is able to inhibit multiple signaling pathways regulating metabolism, survival, and metastatic potential of PC cells.

3.5.37. Green Tea Extract

Green tea polyphenols have been shown to exhibit multiple antitumor activities in various cancers. Zhang et al. showed that green tea extract inhibited molecular chaperones heat-shock protein 90, its mitochondrial localized homologue Hsp75, and heat-shock protein 27, concomitantly. Furthermore, green tea extract inhibited Akt activation and the levels of mutant p53 protein, and induced apoptosis and growth suppression of the cells. The authors of this study discovered new molecular targets of the green tea extract, and provided further evidence on the activity of green tea in PC [].

3.5.38. Helicteres hirsuta Lour

Helicteres hirsuta Lour is the name of a herbal medicine used for the treatment of malaria and diabetes. Terpenoids, flavonoids, and lignans are the dominant constituents of Helicteres species []. Pham et al. showed that the leaf and stem extracts from Helicteres hirsuta and their aqueous and saponin-enriched butanol sub-fractions possessed a strong anticancer activity in vitro against MIA PaCa-2, BxPC-3, and CFPAC-1 cells [].

3.5.39. Inula helenium

Inula helenium is a widespread plant species belonging in the sunflower family asteraceae. It is native in Eurasia, Spain, and Xinjiang Province in western China. The constituents of Inula helenium are sesquiterpene lactones eudesmanolides, having anticancer, anti-inflammatory, antimicrobial, antiproliferative, and cytotoxic properties. Sesquiterpenoids contain thousands of compounds, and have been described as the active components of various medicinal plants used in traditional medicine. Zhang et al. showed that low concentrations of the extract of inula helenium caused cfpac-1 cell cycle arrest, whereas high concentrations induced mitochondria-dependent apoptosis. In addition, ethyl acetate extract of inula helenium inhibited the phosphorylation of the signal transducer and activator of the transcription (stat)3/akt pathway [].

3.5.40. Lonicera japonica

Lonicera japonica is a species of honeysuckle native to eastern Asia, and has the highest contents of chlorogenic acid []. The dried leaves and flowers are used in traditional Chinese medicine to treat fever, cough and thirst, and certain inflammatory disorders, including viral infections. Lin et al. investigated a homogenous polysaccharide extracted and purified from flowers of Lonicera japonica in PC cell lines. They showed that Lonicera japonica inhibited BxPC-3 and PANC-1 PC cell growth at the concentration of 1 mg/mL [].

3.5.41. Lupeol

Lupeol is a dietary triterpene present in many fruits and medicinal plants. This ingredient possesses a number of pharmacological properties, including in vitro and in vivo anti-cancer activities. Liu et al. [] showed that Lupeol inhibited the proliferation of PC cells, and induced apoptosis and cell cycle arrest.

3.5.42. Mangifera indica

Mangifera indica, commonly known as mango, is a species of flowering plant in the sumac and poison ivy family Anacardiaceae. Mango components can be grouped into macronutrients (carbohydrates, proteins, amino acids, lipids, fatty, and organic acids), micronutrients (vitamins and minerals), and phytochemicals (phenolic, polyphenol, pigments, and volatile constituents). Mango fruit also contains structural carbohydrates, such as pectins and cellulose. The most important organic acids include malic and citric acids []. It has been shown that different parts of the mango tree have different therapeutic properties. Nguyen et al. found that a methanol extract of the bark of Mangifera indica could inhibit the survival of human PC cells under nutrient-deprived conditions without an apparent toxicity. This methanol extract was found to consist of 19 compounds [].

3.5.43. Mexican Lime (Citrus aurantifolia)

Lime (Citrus aurantifolia Swingle) is a citrus fruit, having antineoplastic properties. Thirty-three chemical compounds were identified, with d-limonene forming the major constituent. Other prominent constituents include 3,7-dimethyl-2,6-octadien-1-ol geraniol E-citral Z-citral and β-ocimene []. Patil et al. extracted the bioactive compounds of Mexican lime (neohesperidin, hesperidin, and hesperitin) using different solvents. They showed that limonoids identified (limonexic acid, isolimonexic acid, and limonin) inhibited PC-28 growth. Furthemore, the induction of apoptosis was confirmed by the expression of Bax, Bcl-2, casapase-3, and p53, indicating that antioxidant activity depends on the flavonoids, whereas the inhibition of proliferation depends on the content of both flavonoids and limonoids [].

3.5.44. Moringa Oleifera

It has previously been described that the combination of Moringa oleifera with radiation excibits an additional inhibitory effect by overcoming the radioresistance of PC cells []. In this study, the authors investigated the effect of aqueous Moringa oleifera leaf extract on cultured human PC cells. They found that this extract inhibited the growth of all PC cell lines, and enhanced the cytotoxic effect of cisplatin on PC cell lines []. Moringa oleifera leaf extract inhibits the growth of PC cells and the cells’ NF-κB signaling pathway, and increases the efficacy of chemotherapy with cisplatin in human PC cells.

3.5.45. Matrine

Matrine, an alkaloid extracted from the Chinese herb of the genus Sophora flavescens, has exhibited a variety of pharmacological effects, including anti-proliferative and pro-apoptotic properties. Matrine and the related compound oxymatrine act as a nematicide against a variety of nematodes []. Liu et al. showed in in vitro assays, that matrine inhibited cell viability by down-regulating the expression of PCNA, and induced cell apoptosis by reducing the ratio of Bcl-2/Bax, up-regulating Fas, and increasing activation of caspases-8, -3, and -9. In the in vivo model, matrine inhibited tumor growth, and regulated the tumoral gene expression [].

3.5.46. Naringenin and Hesperetin Combined Treatment

Citrus unshiu is a seedless citrus species grown in Japan, Spain, central China, Korea, the USA, South Africa, and South America. The chemical constituents of the Citrus unshiu include γ-terpinene 2-β-pinene 1-methyl-2-isopropylbenzene L-limonene β-ocimene and α-pinene []. Lee et al. showed that the combined treatment of naringenin and hesperetin inhibited the growth and the migration of human PC cells compared to separate treatment with naringenin or hesperetin, through the induction of caspase-3 cleavage []. Moreover, combined treatment inhibited the phosphorylation of focal adhesion kinase and p38 signaling compared with separate treatment. In in vivo xenograft models, the combination treatment again showed an anti-growth effect.

3.5.47. Nerium oleander

Oleandrin, a cardiac glycoside, exerts an anti-proliferative activity in in vitro malignant cells. PBI-05204, an extract of Nerium oleander containing oleandrin, was tested in a human PC orthotopic model. It was found that all the control mice exhibited tumors, whereas 25% of the mice treated for 6 weeks with PBI-05204 (40 mg/kg) showed dissectible tumors. PBI-05204 also markedly enhanced the antitumor efficacy of gemcitabine. This novel botanical drug exerts its potent antitumor activity through down-regulation of PI3k/Akt and mTOR pathways [].

3.5.48. Nimbolide

Nimbolide is a triterpenoid extracted from the flowers of Azadirachta indica, which is a tree native to the Indian subcontinent. It represents a major component in Siddha and Unani medicine. Products made from this tree have been used in India for their anthelmintic, antifungal, antidiabetic, antibacterial, antiviral, contraceptive, and sedative properties. Neem leaves have also been used for various skin disorders, such as eczema and psoriasis. In adults, short-term use is probably safe, although long-term use may be toxic for the liver and kidneys. Subramani et al. assessed the anticancer properties of nimbolide against PC. They showed that nimbolide induces the generation of reactive oxygen species, thereby regulating both apoptosis and autophagy in PC cells. Nimbolide-mediated reactive oxygen species generation inhibited proliferation and metastasis via mitochondrial-mediated apoptotic cell death. In in vivo experiments, nimbolide was effective in inhibiting PC growth and metastasis [].

3.5.49. Obacunone

Obacunone is one of the oxygenated triterpenoids found in rutaceae family. It has many biological actions, including antiproliferative activities against cancer cells. Chidambara et al. investigated the antiproliferative action of obacunone on cultured PC cells. The plant induced the inhibition of Panc-28 cell proliferation in a dose- and time-dependent manner, with a concurrent induction of apoptosis. The plant was able to up-regulate the expression of p53 and pro-apoptotic protein Bax, and down-regulate the Bcl2, NFκB, and Cox-2 [].

3.5.50. Ocimum sanctum

Ocimum sanctum (“Holy Basil”) has been used in traditional Indian medicine in a variety of clinical situations. The chemical composition of Holy Basil, also known as tulsi, is highly complex, containing many nutrients and other biologically active compounds, the proportions of which may vary considerably []. Shimizu et al. showed that extracts of Ocimum sanctum leaves can inhibit the proliferation, migration, invasion, and induce apoptosis of PC cells in vitro. Intraperitoneal injections of the aqueous extract of Ocimum sanctum inhibited the growth of orthotopically transplanted PC cells. Mice treated with Ocimum sanctum extracts exhibited up-regulation of E-cadherin, and induction of apoptosis, whereas genes that promote survival and chemo/radiation resistance were down-regulated [].

3.5.51. Oleuropein

Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds, especially oleuropeinOleuropein has a significant anti-proliferative activity. Goldsmith et al. showed that the extracts of the Corregiola and Frantoio varieties of Olea europaea L. leaves significantly decreased the viability of PC cell lines relative to controls [].

3.5.52. Olive Biophenols (Oleuropein, Hydroxytyrosol, and Tyrosol)

Olives contain more than 100 different biophenols, the most important being hydroxytyrosol and tyrosol, as well as their secoiridoid derivatives, verbascoside, lignans, and flavonoids. The main pharmacological studies reported so far have dealt with the antioxidant, anti-inflammatory, cardiovascular, immunomodulatory, gastrointestinal, respiratory, antimicrobial, anticancer, and chemopreventive properties of these biophenols. As far as their safety is concerned, these products are generally considered safe, although further studies are needed. The olive biophenols, oleuropein, hydroxytyrosol, and tyrosol, showed cytotoxicity towards cancer cells without affecting normal cells. In a recent study, the authors treated PC cells and non-tumorigenic pancreatic cells with oleuropein, hydroxytyrosol, and tyrosol. They found that oleuropein displayed selective toxicity towards MIA PC cells and hydroxytyrosol towards MIA PC and HPDE cells. Furthemore, oleuropein and hydroxytyrosol induced apoptosis in MIA PC cells [].

3.5.53. Oridonin

Oridonin is an organic heteropentacyclic compound isolated from the leaves of the herb Rabdosia rubescens. It is an organic heteropentacyclic compound, an enone, a cyclic hemiketal, a secondary alcohol, and an ent-kaurane diterpenoid (Figure 6). This traditional Chinese medicine substance has been shown long ago to exhibit antitumor effects.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g006.jpg

Chemical structure of Oridonin (PubChem 134688823).

Bu et al. found that oridonin induced apoptotic cell death in PC cells in a dose-dependent manner; the p53 being responsible for this antineoplastic action. Oridonin also increased the expression of p-p53 and p21 in the PC cells []. To further verify the anti-cancer effects of oridonin, Gui et al. showed that 105 miRNAs were differentially expressed in oridonin-treated BxPC-3 human PC cells, indicating that oridonin inhibits BxPC-3 cells through regulating the expression of miRNAs [].

3.5.54. Paeonia lactiflora

The chemical compound aeoniflorin, a monoterpene glycoside, represents one of the major constituents of an herbal medicine derived from Paeonia lactifloraAeoniflorin has been shown to exhibit antitumor effects in various cancer types. Li et al. showed that Aeoniflorin suppressed the growth of PC cell lines, and sensitized them to X-ray irradiation. Aeoniflorin treatment resulted in a reduction of cell proliferation, and an increase in the expression of the apoptotic protein Bax []. These results suggest that Aeoniflorin inhibits PC growth by up-regulating the tumor-suppressor gene HTRA3.

3.5.55. Palm Oil Phenolics and PALM JUICE

Palm oil and its components are increasingly used in foods such as cooking oils, margarines, shortenings, and confectionery products. It contains 50% saturated fatty acids, 40% monounsaturated fatty acids, and 10% polyunsaturated fatty acids []. Oil palm phenolics have been shown to have anti-carcinogenic activities. By using two PC cell lines, Ji et al. showed that oil palm phenolics suppressed PC cell proliferation. Oil palm phenolic-induced apoptosis was associated with a decrease in Bcl-XL expressions, and increased cleaved caspase-3, caspase-9, and PARP expression, thus confirming the anti-tumor effects of these substances [].

3.5.56. Paramignya trimera Root and Phyllanthus amarus

During recent years, a medicinal plant rich in saponins (more than 500 mg EE/g dried sample) named Xao tam phan (Paramignya trimera Guillaum) has been used in cancer prevention and treatment []. Phyllanthus amarus, a small herb belonging to the family Euphorbiaceae, is used widely, especially in Indian Ayurvedic medicine, for a number of pathological conditions []. Nguyen et al. assessed the cytotoxic activity of extracts and fractions from the Paramignya trimera root and Phyllanthus amarus against two PC cell lines. The root of Paramignya trimera root and the whole plant of Phyllanthus amarus were used. The findings revealed an impressive cytotoxic capacity of the Paramignya trimera root extract against both PC cell lines in a range of concentrations, which was higher than those of gemcitabine. In contrast, the cytotoxic capacity of the Phyllanthus amarus extract was significantly lower than that of gemcitabine. The IC50 values of the Paramignya trimera root extract were lower than that of the Phyllanthus amarus extract []. Paramignya trimera root extract could be a source for the development of new drugs against PC.

3.5.57. Plumbagin

Plumbagin, isolated from Plumbago zeylanica, possesses an anticancer activity. The structure of its active principle is similar to that of vitamin K []. Plumbagin inhibited the growth of Panc-1 and Bxpc-3 cells by inducing apoptosis through the mitochondria-related pathway and caspase cascades [].

3.5.58. Pomegranate extract

Pomegranate extract is a standardized whole-fruit extract of pomegranate, which is a fruit rich in polyphenols, organic acids, sugars, polysaccharides, and minerals []. This extract exhibits strong antioxidant activity, having anticancer properties also. Nair et al. used PANC-1 and AsPC-1 human PC cells to test the effects of Pomegranate extract. It was shown that Pomegranate extract induced cell cycle arrest, and inhibited cell proliferation in PANC-1 cells. It is of interest that Pomegranate extract was more effective in inhibiting the proliferation of PANC-1 cells than the clinically used dose of paclitaxel []. It is possible that unidentified phytochemicals are responsible for the inhibitory effect of Pomegranate extract.

3.5.59. Pulsatilla koreana

Pulsatilla koreana has been used as a traditional medicine for the treatment of a number of pathological situations in Korea. Phytochemical studies demonstrated the presence of protoanemonin, deoxypodophyllotoxin, oleanane, and 33 upine-type triterpenoid saponins on Pulsatilla koreana roots []. Son et al. showed that SB365 (saponin D isolated from the root of Pulsatilla koreana) suppressed the growth and proliferation of human PC cell lines by inducing apoptosis through an increase in the levels of cleaved caspase-3, and a decrease in the Bcl-2 expression. SB365 exerted also a significant anti-angiogenic effect. Finally, SB365 inhibited tumor growth through the induction of apoptosis, and inhibition of angiogenesis in an in vivo mouse xenograft [].

3.5.60. Quercetin

Quercetin represents one of most effective biopolyphenols chemicals present in several plants that have antioxidative and anti-inflammatory actions. Quercetin has been used as an adjunctive drug to PC treatment, acting through inhibition of autophagy and apoptosis oxidative stress, and enhancing the sensitivity to chemotherapy agents []. Borska et al. demonstrated that quercetin exerted cytotoxic action on two neoplastic cell lines. In the EPP85-181RDB cell line, quercetin sensitized resistant cells to daunorubicin, suggesting that it could break the resistance of neoplastic cells to chemotherapy []. This synergistic effect might allow the reduction in the total dose of the antineoplastic drug, thus reducing the rate of possible treatment side-effects. It can be used, therefore, as a supplementary drug to patients with PC.

3.5.61. Radix Scutellariae

Radix Scutellariae represents the dried root of Scutellariae baicalensis Georgi. This plant has been extensively used in several Asian countries as an effective antinflammatory agent. Its root, known as Radix Scutellariae, is the source of the Chinese medicine Huang Qin for various clinical disorders. The main compounds responsible for the biological activity of skullcaps are flavonoids. Six flavones have proven to be the major bioactive flavones existing in the forms of aglycones and glycosides []. In a recent study, Liu et al. investigated the mechanisms of the total flavonoid aglycone extracted from Radix Scutellariae in inducing autophagy and apoptosis in PC cells in vitro and in vivo. In the in vitro experiments, they showed that total flavonoid aglycone extracted exhibited an anti-tumor activity, and induced apoptosis and autophagy in PC cell lines through the PI3K/Akt/mTOR signaling pathway. In the in vivo studies, they showed that 150 mg/kg of total flavonoid aglycone extracted inhibited the BxPC3 tumor growth in immune deficient mice, and induced both apoptosis and autophagy [].

3.5.62. Rhazya stricta

Rhazya stricta Decne is an important medicinal species used in South Asia and Middle East. Some of its alkaloids have been reported to have anticancerous properties. The study of Shaer et al. showed that the crude alkaloids extract of Rhazya stricta significantly induced apoptotic death in PC cells. They observed a significant decrease in cell viability in a dose-dependent manner [].

3.5.63. Salvia chinensis

Salvia chinensis is an annual plant growing in China belonging to the Labiatae plant family. This herbal medicine has been used in the treatment of hepatitis, as well as in breast, liver, and gastric cancer. Salvia chinensis consists of more than fifty chemical constituents, in four classes, namely terpenoids, phenolic acids, flavonoids, and dibenzylcyclooctadiene lignans []. Zhao et al. demonstrated that Salvia chinensis induced potent cytotoxicity in the MiapaCa-2 human PC cells. Under fluorescence microscopy, morphological features of apoptosis in the PC cell lines following treatment with the extract were also detected [].

3.5.64. Sedum sarmentosum Bunge

Sedum sarmentosum Bunge extract, a traditional Chinese herbal medicine, contains multiple active chemical components, including tricin-7-O-b-dglucoside, isorhamnetin, quercetin, and kaempferide []. This herbal has been used in a variety of clinical disorders, including liver diseases and other inflammatory situations. It has recently been used to treat tubulointerstitial damage in kidneys following injury []. However, the role of this extract has never been tested in PC. In this regard, Bai et al. showed that the Sedum sarmentosum Bunge extract inhibited cell growth, accompanied by down-regulated expression of proliferating cell nuclear antigen, and increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, Sedum sarmentosum Bunge extract induced p53 expression, and inhibited epithelial-mesenchymal transition through down-regulation of the proliferation-related hedgehog signaling pathway. In animal xenograft models of PC, Sedum sarmentosum Bunge extract suppressed the growth of pancreatic tumors [].

3.5.65. Sugiol

Sugiol is an abietane diterpenoid natural product acting as an antiviral and antineoplastic agent, and as an antioxidant and radical scavenger. Hao et al. evaluated the anticancer activity of sugiol, and observed that sugiol reduced the cell viability of human PC cells through reactive oxygen species-mediated alterations in mitochondrial membrane potential, ultimately leading to apoptosis. Sugiol also caused cell cycle arrest in the G2/M phase, and up-regulated the expression of Bax, with down-regulation of Bcl-2 expression, indicating that it could be a potent molecule against PC [].

3.5.66. TEOA (2a,3a,24-thrihydroxyurs-12-en-28-oicacid)

TEOA (2a,3a,24-thrihydroxyurs-12-en-28-oicacid) a traditional Chinese herbal medicine which represents a pentacyclic triterpenoid isolated from the roots of A. eriantha Benth, exhibiting anti-inflammatory and anti-cancer effects both in vivo and in vitro. Recently, Yang et al. demonstrated that this herbal inhibited the proliferation and migration of PC cells concurrently, causing the induction of mitochondrial dysfunction in PANC1 and SW1990 cells. Finally, TEOA induced autophagic cell death in PC cells by inactivating the ROS-dependent mTOR/p70S6k signaling pathway [].

3.5.67. Toosendanin

Toosendanin is a triterpenoid extracted from Melia toosendan Sieb et Zucc, used as a digestive tract-parasiticide in ancient China. Toosendanin has a marked antibotulismic effect both in vivo and in vitro. Finally, Toosendanin can induce apoptosis in several cell lines, and suppress the proliferation of various human cancer cells []. Pei et al. found that toosendanin suppressed the viability and growth, as well as the migration and invasion of PC cells. Furthermore, toosendanin repressed xenograft tumor growth in mouse PC models. The substance has no significantly toxic side-effects. Toosendanin inhibits PC cell growth by blocking the Akt/mTOR signaling pathway [].

3.5.68. Tripterygium wilfordii

Tripterygium wilfordii Hook F is a vine plant, used widely in China as a herbal medicine. The main bioactive ingredients of Tripterygium wilfordii may be alkaloids, which, may account for its pharmacological properties. This herbal has anti-inflammatory, anticancer, and antibacterial activities, as well as beneficial effects on immune disorders. Zhao et al. recently performed network pharmacology on Tripterygium wilfordii Hook F using Traditional Chinese Medicine Systems Pharmacology and Gene Cards databases []. They screened out 22 ingredients and 25 target genes associated with PC. They found that triptolide-plasminogen activator urokinase could represent a novel target for patients with PC.

3.5.69. Valtrate

Valtrate, also known as valtric acid, is a novel epoxy iridoid ester isolated from the Chinese aromatic medicinal herb Valeriana jatamansi Jones, belonging in the class of organic compounds known as iridoids and derivatives []. It has been utilized for medicinal purposes in China and India for many years. Chen et al. showed that valtrate inhibited the growth of PC cells by inducing apoptosis and cell cycle arrest. Moreover, valtrate inhibited the tumor growth of the PC cell PANC-1 in xenograft mice by 61%. The underlying mechanisms include an increase of the expression of Bax, suppression of Bcl-2, c-Myc and Cyclin B1, inhibition of the transcriptional activity of Stat3, and decrease in the expression of Stat3 [].

3.5.70. Xanthohumol

Xanthohumol is a natural product found in the female inflorescences of Humulus lupulus, also known as hops. It is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2′, and 4′; a methoxy group at position 6′; and a prenyl group at position 3′ []. Jiang et al. showed that xanthohumol inhibited the growth of PC cells and their xenograft tumors by inducing cell cycle arrest and apoptosis via inhibition of phosphorylation of the signal transducer, activation of the transcription 3, and expression of its downstream-targeted genes cyclinD1 and Bcl-xL. Xanthohumol might be a promising therapeutic agent against PC. The STAT3 signaling pathway is its key molecular target [].

3.5.71. Xao tam phan (Paramignya trimera)

Xao tam phan (Paramignya trimera) is a traditional medicinal plant used in the treatment of a number of cancers in Vietnam. This plant contains saponins, phenolics, flavonoids, and proanthocyanidins equiv., 81.49 mg rutin equiv., and 58.08 mg catechin equiv. (per g dried extract, respectively) []. Chemical analysis of Paramignya trimera leaves showed that total phenolic, total flavonoid, proanthocyanidin, and saponin contents were gallic acid, protocatechuic acid, ellagic acid, rutin, and quercetin. Powdered extract of the Paramignya trimera leaf exhibited anti-proliferative capacity against PC cell lines, being higher than those of ostruthin and gemcitabine. Paramignya trimera leaf extract represents a rich source of phytochemicals that possess antioxidant and anti-proliferative activities against PC [].

3.5.72. Xylaria psidii

Xylaria is a genus of ascomycetous fungi growing on dead wood. It represents an important source of biologically active metabolites. Two compounds, isolated from Xylaria psidii, namely xylarione A and 5-methylmellein, exhibited cytotoxicity against PC cells, with features characteristic of apoptosis. The cell cycle distribution confirmed a cell cycle arrest at the sub-G1 phase. Flow cytometry analysis displayed a substantial loss of mitochondrial membrane potential by both the compounds []. The isolated compounds from Xylaria psidii, namely xylarione A and 5-methylmellein, may serve as potential therapeutic agents for PC.

3.5.73. Wikstroemia indica

Wikstroemia indica is a small shrub with small flowers and toxic fruits. It can be found in forests and on rocky, shrubby slopes in central and southeastern China, Vietnam, India, and the Philippines. It is an herb that has been used for a long time in traditional Chinese medicine. Four compounds, namely daphnoretin, chrysophanol, myricitrime, and rutin, were purified from Wikstroemia indica []. It has some side-effects, including dizziness, blurred vision, nausea, vomiting, abdominal distension and pain, and diarrhea. This plant has been used in clinical practice as an antipyretic, detoxicant, and expectorant. Chang et al. evaluated the in vitro cytotoxicity against PC cell lines of 26 compounds isolated from the roots of Wikstroemia indica. Two compounds, namely 8 and 12, displayed preferential cytotoxicity in the nutrient-deprived medium, without causing toxicity in normal nutrient-rich conditions [].

3.5.74. Ziziphus Nummularia

Ziziphus nummularia is a thorny shrub, rich in bioactive molecules, and bountiful in bioactive molecules, including tannins, flavonoids, steroids, glycosides, and alkaloids. The leaves of this plant have been used in the treatment of a number of pathological situations, including cancer. In an experimental study, Mesmar et al. found [] that treatment of human PC cells with ethanolic extract (100–300 μg/mL) of Ziziphus nummularia inhibited cell proliferation and angiogenesis, and down-regulated the ERK1/2 and NF-κB signaling pathways.

4. Discussion

PC represents one of the most lethal human malignancies. The treatment of the disease is multidisciplinary, and depends on the stage of cancer at diagnosis. The available therapeutic modalities include the combination of surgery, chemotherapy, chemoradiotherapy, and supportive care. During the last years, the type of multidisciplinary treatment of this tumor is rapidly changing, especially in cases of locally advanced disease. It seems that the number of therapeutic options in metastatic disease will be transformed in the near future, combining personalized medicine, innovative targets, immunotherapy, therapeutic vaccines, and adoptive T-cell transfer []. However, despite the promising results obtained after the introduction of the FOLFIRINOX regimen, and, subsequently, the nab-paclitaxel in combination with gemcitabine, the prognosis of this malignancy remains disappointing. It is worth mentioning that, so far, neither personalized medicine nor immunotherapy achieved quite favorable results. On the other hand, the value of immune checkpoint inhibitors, one of the promising therapeutic modalities, is, at the moment, questionable. A number of other treatments, including combinations of chemotherapy with immunotherapy and vaccines or T-cells modified with a chimeric antigen receptor, could be of value in the future []. Cancer immunotherapy might improve the effectiveness of other therapeutic options, which might together improve the prognosis of PC []. Furthermore, although therapies targeting the stroma are promising, they do not represent the standard care at the moment []. Finally, novel therapies targeting BRCA1/2 mutations, mismatch repair deficiencies, and NTRK1-3 fusions have achieved good results in clinical trials []. Another major problem concerning the chemotherapy applied is the gemcitabine resistance of PC cells, leading to poor clinical outcomes. Even today, the underlying mechanisms for the development of gemcitabine resistance remain unclear. However, chemoresistance might be a result of the interaction between PC cells, cancer stem cells, and the tumor microenvironment []. Moreover, transcription factors, including enzymes and signaling pathways, participated in the nucleoside metabolism, and are probably involved in the development of chemoresistance to gemcitabin.

The issue of the contribution of herbal preparations and plants in the treatment of various human pathological conditions has been “adopted” by a significant percentage of the population of many countries, including those of the Western world []. So far, the publications on PubMed using the key words “plants”, “herbals”, AND “treatment” amount to 267,318 articles, of which 10,996 are clinical trials, 1141 are meta-analyses, 8346 are randomized clinical trials, 24,740 are reviews, and 1747 are systematic reviews. Already, in the first 2 weeks of 2022, the number of relevant articles in the PubMed database exceeded 1200, which proves the lively interest of researchers and clinicians regarding the role of plants and herbs in various diseases. As mentioned before, various herbal and plants have been used for thousands of years to treat various diseases in many countries, including China, India, Japan, and Korea. In Western countries, this kind of treatment represents the so-called complementary and alternative medicine. Concerning PC, it seems possible that many natural products derived from herbals and plants could play an important role in the prevention and treatment of this malignancy as an adjunctive approach. It has been suggested that more than 60% of the current anticancer chemotherapeutic drugs used in clinical practice were initially developed from plants and herbals. Compared to standard chemo-radiotherapy, herbal treatment has many advantages, including the enhancement of the immune system and suppression of tumor progression, while also reducing the side-effects of chemo-radiotherapy. Also, individual chemical substances derived from plants and herbals may have anti-oxidative, anti-inflammatory, immunoregulatory, and antiproliferative properties. Whereas Western medicine mainly focuses on targeting specific malignant molecular mechanisms, complementary medicine employs a holistic approach []. A network meta-analysis of Chinese herbal injections combined with chemotherapy for the treatment of PC published in 2017 concluded that Chinese herbal administration could be beneficial for PC patients in improving performance status, and reducing the adverse drug reactions [].

In the present review, we have identified 86 studies looking at the effects of 74 different herbals and plant derivatives that have been investigated in experimental models of PC cell lines and PC xenografts. It is quite impressive that almost all studies showed beneficial effects. We identified a small number of clinical studies investigating the role of adding plants or plant extracts in the regular chemotherapy in patients with advanced PC. So far, three plants were tested, all of which showed beneficial results concerning the survival rate and the disease-free survival rate. Two more case reports showed remarkable improvement of the patients. Regarding clinical studies exploring the effect of plant derivatives on PC stem cells, we have identified five relevant studies, all of which revealed that the plants inhibited the proliferation rate of the cancer stem cells, and increased the efficacy of chemotherapeutics used in PC patients. Concerning studies combining nanotechnology with herbals and plants aiming to target PC cells, we identified seven such experimental studies, all of which showed promising results. Among the herbals investigated, Scutellaria barbata gold nanoparticles and Parvifloron D-loaded smart nanoparticles showed results that should be further investigated in clinical trials. The side-effects were very few, thus making this technology a very attractive one for the treatment of PC. Finally, we identified a satisfactory number of articles referring to 22 different plants and herbals, looking at the cytotoxic effects of the co-administration of chemotherapeutic agents with plants. Again, a positive therapeutic result was obtained in all studies.

The great majority of these plants and herbals have been previously used for centuries in the treatment of cancer. As previously mentioned, the effectiveness of the herbal and plant preparations was quite satisfactory in all studies, being significantly better compared to placebo. Therefore, and because of their multiple biological properties, herbs and plants should be tested in patients with PC. However, as herbal preparations are mixtures containing a huge range of biological compounds, it is difficult to know which component offers the most beneficial pharmacological effect or clinical benefit. The determination of herb components, dosage, and course during or after herb treatment becomes a challenge for clinical employment.

Individual herbal and plants usually pose more than one cellular and molecular mechanism explaining their antineoplastic action. As indicated in Table 2, most of the herbals and plants exhibited their effect via the induction of cellular apoptosis involving the mitochondrial pathway, through p53- and caspase-dependent induction of p38 MAPK, (Figure 7) inhibition of BxPC-3 cells through the regulation of the expression of miRNAs, increase of caspase-3 and decrease of Bcl-2 expression, decreased expression of major factors of angiogenesis, and induction of apoptosis and autophagy through the PI3K/Akt/mTOR signaling pathway. Also, the inhibition of Kras-activated PC cell lines, suppression of Kras protein, suppression of phosphorylation of Rb and cyclin D1, suppression of the NF-κB signaling pathway (Figure 8), and PC cell growth in xenografts were observed.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g007.jpg

Induction of mitochondrial (“Intrinsic”) pathway of apoptosis induced by various herbal and plant proapoptotic stimuli. The proapoptotic stimuli derived from various plants and herbals (Matrine, Apigenis, Nimbolide, Curcumocin, Lupeol, etc.) initiate this pathway by inducing permeability of MMP (mitochondrial membrane permeabilization). Subsequently, intermembrane space proteins are released into the cytosol, and the mitochondrial transmembrane potential is dissipated, causing, as a result, the induction of bioenergetic and redox crises, leading to the activation of both caspase-dependent and -independent mechanisms, committing the cell to death.

Внешний файл, содержащий изображение, иллюстрацию и т. д. Имя объекта — nutrition-14-00619-g008.jpg

Inhibition of the NF-κB signaling pathway by a number of chemical substances found on herbal and plant extracts. These substances reduce the levels of the expression of a number of key NF-κB family proteins in the cells, including p65, phosphor-IκBα, and IκBα proteins, therefore inducing apoptosis and cell death.

There are some concerns regarding the use of herbal mixture extracts instead of using single natural products. It is possible that herbal mixture extracts work synergistically, although the existing scientific data are insufficient. The most important “side-effect” of the use of herbal preparations is the abandonment of the drugs used in the treatment of neoplastic diseases by the patients, a fact leading to a deterioration of the underlying disorder. Toxic products can be found in some plant preparations. The long-term safety of herbal treatment, including possible mutagenicity, has not been adequately explored.

5. Strengths and Limitations

The study included all clinical and experimental studies published in the international literature up to the middle of 2021. Depending on their nature, the studies were divided into those related to the effect of plants and herbals in patients with PC, and those related to their effect in PC cell lines. The studies related to the effect of plants and herbs using nanotechnology, as well as the studies related to the effect of herbs on PC stem cells, were also mentioned separately. The description was made in alphabetical order so as to facilitate the reader in finding and studying a particular plant or herb. A summary of information regarding the anticancer chemicals contained in every plant or herbal, as well as the underlying mechanism(s) of their action, were also mentioned. Certainly, there are limitations of our study, which are related to: (i) the inability to describe all clinical and experimental data due to their vast amount; (ii) only including studies published in the English language; (iii) being unable to rule out the possibility that plant dosages and herbals used in the experimental and/or clinical studies may be different from the optimum ones; and (iv) the side-effects of these herbal products not being mentioned in detail, but only including the most important of them. Because these natural products have an extremely complex chemical composition on the one hand, and, on the other, they act at different levels, further studies on their bioavailability and exact dosage will be needed. We believe that, in the future, the main use of these herbal products should be tested at a clinical level, administered in combination with conventional chemotherapy, and especially in cases of resistance to chemotherapy.

6. Conclusions

The popularity and acceptability of herbal medicine in developed countries, as well as its availability, safety, and low cost are steadily increasing. According to WHO estimations, 60% of the world’s population, and 80% of the population in developing countries are using herbal medicine []. However, some concerns related to their use with respect to their pharmacognosy and standardization compared with conventional drugs have been raised. Certainly, an improvement in the methods used for the categorization, storage, and quality control of these compounds is necessary. It should be emphasized that the somewhat positive effect of plants and herbs is met with skepticism and reservation by some members of the scientific community. We believe that due to the limited number of clinical trials assessing the role of herbals and plants, and especially their interaction with conventional chemotherapy and polypharmacy in PC patients, caution is required and more clinical studies are needed before affirming that herbals and plants can be effective strategies in PC, and that alternative medicine should enter medical education. Indeed, most studies have been performed in the preclinical setting, and, at the present time, there is insufficient data to draw conclusions on the clinical management of PC patients.

In summary, we can assume that: (i) the number of studies referring to plants and herbals was very large; (ii) all experimental studies confirmed that the plants tested exhibited anticancer potential; (iii) the few clinical studies in which plants were used as a complementary treatment to chemotherapy increased the clinical effect of the chemotherapeutic agent; (iv) all the authors of the relevant papers agree that large clinical trials using different plants as complementary agents to chemo-radiotherapy should urgently be performed. Cancer chemotherapy is very expensive. Although the cost of plant therapy seems to be very low, we suggest that future studies should also include details concerning the exact cost of this therapy. Pharmaceutical companies must contribute to the current knowledge by supporting relevant studies. International scientific societies and governmental organizations should seriously take into account the locally available opportunities of drug development by supporting clinical studies. With a discerned safety of herbs and plants, this kind of treatment, either alone or, preferably, in combination with conventional therapies, would largely benefit patients with pancreatic neoplasms. We suppose that reporting evidence-based scientific observations and case reports might encourage the pharmaceutical companies and government agencies to undertake large scale clinical trials to assess the long-term safety and efficacy of alternative anticancer therapies in humans.

Abbreviations

Bax Bcl-2-like protein 4
Fas Death receptor Fas
mTOR pathway Mammalian target of rapamycin signaling pathway
AURKA Aurora Kinase A
c-jun Protooncogene c-jun
c-fos Protooncogene c-fos
RNA Rivoso Nucleic Acid
AMP activated protein Adenosine monophosphate activated protein
SW 1990 Human pancreatic cancer cell line
CTK2 Cyclin-dependent kinase 2
KIS Natural ditergene quinones
EGFR Epidermal Growth factor Receptor
EGF Epidermal Growth Factor
WST-1 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate
AMPK inhibitor AMP-activated protein kinase
FoxM1 Forkhead box protein M1
MMPs Matrix Metallopeptidases
YES activated Protein Transcriptional Factor
HTRA2/Omi Mitochondrial serine protease protein A2
CIAP-2 Cellular inhibitor of apoptosis.2
BxPC-3 Human pancreatic cancer cell line
STAT3 Trancription Factor STAT3
P-IkB-a Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
CSC Cancer Stem Cells
PANC-1 Pancreatic adenocarcinoma-1 cells
TNF-α Tumor Necrosis Factor-α
IL-1β Interleukin-1β
ACTA2 Actin alpha2
PLGA nanoparticles Poly(lactic-co-glycolic acid)s
NPs1 Nuclear protein of Sacharomycel nanoparticles
AuNPs Gold nanoparticles
KLM1 Pancreatic cancer cell line KLMs
NF-kB Nuclear Factor kappaB
COX-2 Cyclooxygenase-2
AkT Protein KinaseB
JNF c-jun NH2-terminal kinase
VEGF Vascular Endothelial Cell Growth Factor
ERK Extracellular signal-regulates kinases
Bcl-2 B-cell/lymphoma 2 family proteins
P65 Transcription Factor p65

Author Contributions

E.T. collected the relevant references, and was a major contributor in writing the manuscript. A.E.P. analyzed and interpreted the data, and was a major contributor in writing and reviewing the manuscript. T.P. and M.S. helped significantly in the analysis and writing. J.K.T. evaluated the various studies included in the review, and was a major contributor in writing and reviewing the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

No applicable.

Informed Consent Statement

No applicable.

Data Availability Statement

No applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

References

1. Rawla P., Sunkara T., Gaduputi V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 2019;10:10–27. doi: 10.14740/wjon1166. [PMC free article] [PubMed] [CrossRef[]
2. Maisonneuve P. Epidemiology and burden of pancreatic cancer. Pt 2Presse Med. 2019;48:e113–e123. doi: 10.1016/j.lpm.2019.02.030. [PubMed] [CrossRef[]
3. Zhao C., Gao F., Li Q., Liu Q., Lin X. The distributional characteristic and growing trend of pancreatic cancer in china. Pancreas. 2019;48:309–314. doi: 10.1097/MPA.0000000000001222. [PubMed] [CrossRef[]
4. Weisbeck A., Jansen R.J. Nutrients and the pancreas: An epigenetic perspective. Nutrients. 2017;9:283. doi: 10.3390/nu9030283. [PMC free article] [PubMed] [CrossRef[]
5. Liu Y., Wang X., Sun X., Lu S., Liu S. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine. 2018;97:e0114. doi: 10.1097/MD.0000000000010114. [PMC free article] [PubMed] [CrossRef[]
6. Zheng J., Guinter M.A., Merchant A.T., Wirth M.D., Zhang J., Stolzenberg-Solomon R.Z., Steck S.E. Dietary patterns and risk of pancreatic cancer: A systematic review. Nutr. Rev. 2017;75:883–908. doi: 10.1093/nutrit/nux038. [PMC free article] [PubMed] [CrossRef[]
7. Lu P.Y., Shu L., Shen S.S., Chen X.J., Zhang X.Y. Dietary patterns and pancreatic cancer risk: A meta-analysis. Nutrients. 2017;9:38. doi: 10.3390/nu9010038. [PMC free article] [PubMed] [CrossRef[]
8. Idachaba S., Dada O., Abimbola O., Olayinka O., Uma A., Olunu E., Fakoya A.O.J. A review of pancreatic cancer: Epidemiology, genetics, screening, and management. Open Access Maced. J. Med. Sci. 2019;7:663–671. doi: 10.3889/oamjms.2019.104. [PMC free article] [PubMed] [CrossRef[]
9. Saif M.W. Is there a Role for Herbal Medicine in the Treatment of Pancreatic Cancer? JOP. 2008;9:403–407. [PubMed[]
10. Zhang W., Saif M.W., Dutschman G.E., Li X., Lam W., Bussom S., Jiang Z., Ye M., Chu E., Cheng Y.C. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS) J. Chromatogr. A. 2010;1217:5785–5793. doi: 10.1016/j.chroma.2010.07.045. [PMC free article] [PubMed] [CrossRef[]
11. Wang Z.L., Wang S., Kuang Y., Hu Z.M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensisPharm. Biol. 2018;56:465–484. doi: 10.1080/13880209.2018.1492620. [PMC free article] [PubMed] [CrossRef[]
12. Sharifi-Rad J., Quispe C., Herrera-Bravo J., Belén L.H., Kaur R., Kregiel D., Uprety Y., Beyatli A., Yeskaliyeva B., Kırkın C., et al. Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. Oxid. Med. Cell. Longev. 2021;2021:7571132. doi: 10.1155/2021/7571132. [PMC free article] [PubMed] [CrossRef[]
13. Wang S., Zhang J., Zhang Z., Gao W., Yan Y., Li X., Liu C. Identification of Chemical Constituents in the Extract and Rat Serum from Ziziphus Jujuba Mill by HPLC-PDA-ESI-MSn. Iran. J. Pharm. Res. 2014;13:1055–1063. [PMC free article] [PubMed[]
14. Nie R., Zhang Y., Zhang H., Jin Q., Wu G., Wang X. Effect of different processing methods on physicochemical properties, chemical compositions and in vitro antioxidant activities of Paeonia lactiflora Pall seed oils. Food Chem. 2020;332:127408. doi: 10.1016/j.foodchem.2020.127408. [PubMed] [CrossRef[]
15. Saif M.W., Li J., Lamb L., Kaley K., Elligers K., Jiang Z., Bussom S., Liu S.-H., Cheng Y.-C. First-in-human phase ii trial of the botanical formulation PHY906 with capecitabine as second-line therapy in patients with advanced pancreatic cancer. Cancer Chemother. Pharmacol. 2014;73:373–380. doi: 10.1007/s00280-013-2359-7. [PMC free article] [PubMed] [CrossRef[]
16. Zänker K.S., Kaveri S.V., editors. Mistletoe: From Mythology to Evidence-Based Medicine. Volume 4. Karger Medical and Scientific Publishers; Basel, Switzerland: 2015. pp. 11–23. [CrossRef[]
17. Tröger W., Galun D., Reif M., Schumann A., Stanković N., Milićević M. Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: A randomised clinical trial on overall survival. Eur. J. Cancer. 2013;49:3788–3797. doi: 10.1016/j.ejca.2013.06.043. [PubMed] [CrossRef[]
18. Werthmann P.G., Kempenich R., Lang-Avérous G., Kienle G.S. Long-term survival of a patient with advanced pancreatic cancer under adjunct treatment with Viscum album extracts: A case report. World J. Gastroenterol. 2019;25:1524–1530. doi: 10.3748/wjg.v25.i12.1524. [PMC free article] [PubMed] [CrossRef[]
19. Ishiwu C.N., Obiegbuna J.E., Aniagolu N.M. Evaluation of chemical properties of mistletoe leaves from three different trees (avocado, African oil bean and kola) Niger. Food J. 2013;31:1–7. doi: 10.1016/S0189-7241(15)30070-9. [CrossRef[]
20. Matthes H., Friedel W.E., Bock P.R., Zänker K.S. Molecular mistletoe therapy: Friend or foe in established anti-tumor protocols? A multicenter, controlled, retrospective pharmaco-epidemiological study in pancreas cancer. Curr. Mol. Med. 2010;10:430–439. doi: 10.2174/156652410791317057. [PubMed] [CrossRef[]
21. Ritter P.R., Tischoff I., Uhl W., Schmidt W.E., Meier J.J. Sustained partial remission of metastatic pancreatic cancer following systemic chemotherapy with gemcitabine and oxaliplatin plus adjunctive treatment with mistletoe extract. Onkologie. 2010;33:617–619. doi: 10.1159/000321133. [PubMed] [CrossRef[]
22. Ercan G., Karlitepe A., Ozpolat B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res. 2017;37:2761–2775. [PubMed[]
23. Saeed F., Afzaal M., Niaz B., Arshad M.U., Tufail T., Hussain M.B., Javed A. Bitter Melon (Momordica charantia) a natural healthy vegetable. Int. J. Food Prop. 2018;21:1270–1290. doi: 10.1080/10942912.2018.1446023. [CrossRef[]
24. Dhar D., Deep G., Kumar S., Wempe M.F., Raina K., Agarwal C., Agarwal R. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Mol. Carcinog. 2018;57:1166–1180. doi: 10.1002/mc.22833. [PMC free article] [PubMed] [CrossRef[]
25. Xiao W., Li S., Wang S., Ho C.T. Chemistry and bioactivity of Gardenia jasminoidesJ. Food Drug Anal. 2017;25:43–61. doi: 10.1016/j.jfda.2016.11.005. [PMC free article] [PubMed] [CrossRef[]
26. Rangarajan P., Subramaniam D., Paul S., Kwatra D., Palaniyandi K., Islam S., Harihar S., Ramalingam S., Gutheil W., Putty S., et al. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget. 2015;6:27661–27673. doi: 10.18632/oncotarget.4871. [PMC free article] [PubMed] [CrossRef[]
27. Lee M.S., Hwang B.S., Lee I.K., Seo G.S., Yun B.S. Chemical constituents of the culture broth of Phellinus linteus and their antioxidant activity. Mycobiology. 2015;43:43–48. doi: 10.5941/MYCO.2015.43.1.43. [PMC free article] [PubMed] [CrossRef[]
28. Chandimali N., Huynh D.L., Jin W.Y., Kwon T. Combination effects of hispidin and gemcitabine via inhibition of stemness in pancreatic cancer stem cells. Anticancer Res. 2018;38:3967–3975. doi: 10.21873/anticanres.12683. [PubMed] [CrossRef[]
29. PubChem [Internet] PubChem Compound Summary for CID 5280343, Quercetin. National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD, USA: 2004. [(accessed on 10 December 2021)]. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin []
30. Jin S., Pang Q., Yang H., Diao X., Shan A., Feng X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchosFood Chem. 2021;363:130263. doi: 10.1016/j.foodchem.2021.130263. [PubMed] [CrossRef[]
31. Hoca M., Becer E., Kabadayı H., Yücecan S., Vatansever H.S. The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutr. Cancer. 2019;72:1231–1242. doi: 10.1080/01635581.2019.1670853. [PubMed] [CrossRef[]
32. Yu J., Chen Q. The plant extract of Pao pereira potentiates carboplatin effects against ovarian cancer. Pharm. Biol. 2014;52:36–43. doi: 10.3109/13880209.2013.808232. [PubMed] [CrossRef[]
33. Dong R., Chen P., Chen Q. Extract of the medicinal plant Pao Pereira inhibits pancreatic cancer stem-like cell in vitro and in vivo. Integr. Cancer Ther. 2018;17:1204–1215. doi: 10.1177/1534735418786027. [PMC free article] [PubMed] [CrossRef[]
34. Chadha A.S., Khoo A., Aliru M.L., Arora H.K., Gunther J.R., Krishnan S. Recent advances and prospects for multimodality therapy in pancreatic cancer. Semin. Radiat. Oncol. 2016;26:320–337. doi: 10.1016/j.semradonc.2016.05.002. [PubMed] [CrossRef[]
35. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37. [PubMed[]
36. Byrne J.D., Betancourt T., Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008;60:1615–1626. doi: 10.1016/j.addr.2008.08.005. [PubMed] [CrossRef[]
37. Manzur A., Oluwasanmi A., Moss D., Curtis A., Hoskins C. Nanotechnologies in pancreatic cancer therapy. Pharmaceutics. 2017;9:39. doi: 10.3390/pharmaceutics9040039. [PMC free article] [PubMed] [CrossRef[]
38. Rebelo A., Reis C. Emerging therapeutic nanotechnologies in pancreatic cancer: Advances, risks and challenges. Ther. Deliv. 2018;9:691–694. doi: 10.4155/tde-2018-0048. [PubMed] [CrossRef[]
39. Verma R.K., Yu W., Singh S.P., Shankar S., Srivastava R.K. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine. 2015;11:2061–2070. doi: 10.1016/j.nano.2015.07.001. [PubMed] [CrossRef[]
40. García-Lafuente A., Guillamón E., Villares A., Rostagno M.A., Martínez J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009;58:537–552. doi: 10.1007/s00011-009-0037-3. [PubMed] [CrossRef[]
41. Andrade-Carrera B., Clares B., Noé V., Mallandrich M., Calpena A.C., García M.L., Garduño-Ramírez M.L. Cytotoxic evaluation of (2s)-5,7-dihydroxy-6-prenylflavanone derivatives loaded plga nanoparticles against miapaca-2 cells. Molecules. 2017;22:1553. doi: 10.3390/molecules22091553. [PMC free article] [PubMed] [CrossRef[]
42. Zhu S., Zou K., Fushimi H., Cai S., Komatsu K. Comparative study on triterpene saponins of Ginseng drugs. Planta Med. 2004;70:666–677. doi: 10.1055/s-2004-827192. [PubMed] [CrossRef[]
43. Wang L., Xu J., Yan Y., Liu H., Li F. Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif. Cells Nanomed. Biotechnol. 2019;47:1216–1223. doi: 10.1080/21691401.2019.1593852. [PubMed] [CrossRef[]
44. Santos-Rebelo A., Garcia C., Eleutério C., Bastos A., Castro Coelho S., Coelho M.A., Molpeceres J., SViana A., Ascensão L., Pinto J.F., et al. Development of parvifloron d-loaded smart nanoparticles to target pancreatic cancer. Pharmaceutics. 2018;10:216. doi: 10.3390/pharmaceutics10040216. [PMC free article] [PubMed] [CrossRef[]
45. Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules. 2017;22:1942. doi: 10.3390/molecules22111942. [PMC free article] [PubMed] [CrossRef[]
46. Khakinezhad Tehrani F., Ranji N., Kouhkan F., Hosseinzadeh S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iran. J. Basic Med. Sci. 2020;23:469–482. doi: 10.22038/ijbms.2020.39427.9349. [PMC free article] [PubMed] [CrossRef[]
47. Liu C.M., Peng Q., Zhong J.Z., Liu W., Zhong Y.J., Wang F. Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium occidentale L.) Molecules. 2018;23:393. doi: 10.3390/molecules23020393. [PMC free article] [PubMed] [CrossRef[]
48. Zhao C., Zhang X., Zheng Y. Biosynthesis of polyphenols functionalized ZnO nanoparticles: Characterization and their effect on human pancreatic cancer cell line. J. Photochem. Photobiol. B. 2018;183:142–146. doi: 10.1016/j.jphotobiol.2018.04.031. [PubMed] [CrossRef[]
49. Chen Q., Rahman K., Wang S.J., Zhou S., Zhang H. Scutellaria barbata: A review on chemical constituents, pharmacological activities and clinical applications. Curr. Pharm. Des. 2020;26:160–175. doi: 10.2174/1381612825666191216124310. [PubMed] [CrossRef[]
50. Integrative Medicine, About Herbs, Botanicals & other Products, Search about Herbs, Scutellaria barbata. [(accessed on 10 December 2021)]. Available online: https://www.mskcc.org/cancer-care/integrative-medicine/herbs/scutellaria-barbata#msk_professional
51. Wang L., Xu J., Yan Y., Liu H., Karunakaran T., Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1) Artif. Cells Nanomed. Biotechnol. 2019;47:1617–1627. doi: 10.1080/21691401.2019.1594862. [PubMed] [CrossRef[]
52. Marasini B., Sahu R.P. Natural anti-cancer agents: Implications in gemcitabine-resistant pancreatic cancer treatment. Mini Rev. Med. Chem. 2017;17:920–927. doi: 10.2174/1389557517666170315124438. [PubMed] [CrossRef[]
53. Shimada T., Nanimoto Y., Baron B., Kitagawa T., Tokuda K., Kuramitsu Y. Enzyme-treated asparagus extract down-regulates heat shock protein 27 of pancreatic cancer cells. In Vivo. 2018;32:759–763. doi: 10.21873/invivo.11305. [PMC free article] [PubMed] [CrossRef[]
54. Thani N.A., Keshavarz S., Lwaleed B.A., Cooper A.J., Rooprai H.K. Cytotoxicity of gemcitabine enhanced by polyphenolics from Aronia melanocarpa in pancreatic cancer cell line AsPC-1. J. Clin. Pathol. 2014;67:949–954. doi: 10.1136/jclinpath-2013-202075. [PubMed] [CrossRef[]
55. Qian Y., Yang B., Xiong Y., Gu M. Coix seed emulsion synergistically enhances the antitumor activity of gemcitabine in pancreatic cancer through abrogation of NF-κB signaling. Oncol. Rep. 2016;36:1517–1525. doi: 10.3892/or.2016.4958. [PubMed] [CrossRef[]
56. Pak P.J., Lee D.G., Sung J.H., Jung S.H., Han T.Y., Park S.H., Chung N. Synergistic effect of the herbal mixture C5E on gemcitabine treatment in PANC-1 cells. Mol. Med. Rep. 2021;23:315. doi: 10.3892/mmr.2021.11954. [PMC free article] [PubMed] [CrossRef[]
57. Wei W.Τ., Chen H., Ni Z.L., Liu H.Β., Tong H.F., Fan L., Liu A., Qiu M.Χ., Liu D.L., Guo H.C., et al. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol. 2011;39:1381–1390. doi: 10.3892/ijo.2011.1147. [PubMed] [CrossRef[]
58. Rimmon A., Vexler A., Berkovich L., Earon G., Ron I., Lev-Ari S. Escin chemosensitizes human pancreatic cancer cells and inhibits the nuclear factor-kappaB signaling pathway. Biochem. Res. Int. 2013;2013:251752. doi: 10.1155/2013/251752. [PMC free article] [PubMed] [CrossRef[]
59. Kim N., Kang M.J., Lee S.H., Son J.H., Lee J.E., Paik W.H., Ryu J.K., Kim Y.T. Fisetin enhances the cytotoxicity of gemcitabine by down-regulating erk-myc in miapaca-2 human pancreatic cancer cells. Anticancer Res. 2018;38:3527–3533. doi: 10.21873/anticanres.12624. [PubMed] [CrossRef[]
60. Capistrano R., Vangestel C., Vanpachtenbeke H., Fransen E., Staelens S., Apers S., Pieters L. Coadministration of a Gloriosa superba extract improves the in vivo antitumoural activity of gemcitabine in a murine pancreatic tumour model. Phytomedicine. 2016;23:1434–1440. doi: 10.1016/j.phymed.2016.07.012. [PubMed] [CrossRef[]
61. Pak P.J., Kang B.H., Park S.H., Sung J.H., Joo Y.H., Jung S.H., Chung N. Antitumor effects of herbal mixture extract in the pancreatic adenocarcinoma cell line PANC1. Oncol. Rep. 2016;36:2875–2883. doi: 10.3892/or.2016.5067. [PubMed] [CrossRef[]
62. Li L., Zhao S.L., Yue G.G.L., Wong T.P., Pu J.X., Sun H.D., Fung K.P., Leung P.C., Han Q.B., Lau C.B.S., et al. Isodon eriocalyx and its bioactive component eriocalyxin b enhance cytotoxic and apoptotic effects of gemcitabine in pancreatic cancer. Phytomedicine. 2018;44:56–64. doi: 10.1016/j.phymed.2018.03.055. [PubMed] [CrossRef[]
63. Akasaka H., Sasaki R., Yoshida K., Takayama I., Yamaguchi T., Yoshida H., Mizushina Y. Monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach enhances the anti-cell proliferation effect of gemcitabine in human pancreatic cancer cells. Biochim. Biophys. Acta. 2013;1830:2517–2525. doi: 10.1016/j.bbagen.2012.11.004. [PubMed] [CrossRef[]
64. Akasaka H., Mizushina Y., Yoshida K., Ejima Y., Mukumoto N., Wang T., Inubushi S., Nakayama M., Wakahara Y., Sasaki R. MGDG extracted from spinach enhances the cytotoxicity of radiation in pancreatic cancer cells. Radiat. Oncol. 2016;11:153. doi: 10.1186/s13014-016-0729-0. [PMC free article] [PubMed] [CrossRef[]
65. Hagoel L., Vexler A., Kalich-Philosoph L., Earon G., Ron I., Shtabsky A., Marmor S., Lev-Ari S. Combined effect of moringa oleifera and ionizing radiation on survival and metastatic activity of pancreatic cancer cells. Integr. Cancer Ther. 2019;18:1534735419828829. doi: 10.1177/1534735419828829. [PMC free article] [PubMed] [CrossRef[]
66. Gong J., Muñoz A.R., Pingali S., Payton-Stewart F., Chan D.E., Freeman J.W., Ghosh R., Kumar A.P. Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells. Mol. Carcinog. 2017;56:402–411. doi: 10.1002/mc.22503. [PMC free article] [PubMed] [CrossRef[]
67. Hernandez-Unzueta I., Benedicto A., Romayor I., Herrero A., Sanz E., Arteta B., Olaso E., Márquez J. Ocoxin oral solution exerts an antitumoral effect in pancreatic cancer and reduces the stromal-mediated chemoresistance. Pancreas. 2019;48:555–567. doi: 10.1097/MPA.0000000000001277. [PMC free article] [PubMed] [CrossRef[]
68. Cheung S.S., Tai J., Hasman D., Ou D., Warnock G.L. Inhibition of human pancreatic cancer cell proliferation by devil’s club oplopanax horridus and its polyacetylene bioactive compound. Nutr. Cancer. 2015;67:954–964. doi: 10.1080/01635581.2015.1055367. [PubMed] [CrossRef[]
69. Tai J., Cheung S.S., Ou D., Warnock G.L., Hasman D. Antiproliferation activity of Devil’s club (Oplopanax horridus) and anticancer agents on human pancreatic cancer multicellular spheroids. Phytomedicine. 2014;21:506–514. doi: 10.1016/j.phymed.2013.10.003. [PubMed] [CrossRef[]
70. Liu Y.H., Weng Y.P., Tsai H.Y., Chen C.J., Lee D.Y., Hsieh C.L., Wu Y.C., Lin J.Y. Aqueous extracts of Paeonia suffruticosa modulates mitochondrial proteostasis by reactive oxygen species-induced endoplasmic reticulum stress in pancreatic cancer cells. Phytomedicine. 2018;46:184–192. doi: 10.1016/j.phymed.2018.03.037. [PubMed] [CrossRef[]
71. Yu J., Drisko J., Chen Q. Inhibition of pancreatic cancer and potentiation of gemcitabine effects by the extract of Pao Pereira. Oncol. Rep. 2013;30:149–156. doi: 10.3892/or.2013.2461. [PubMed] [CrossRef[]
72. Rawat L., Hegde H., Hoti S.L., Nayak V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed. Pharmacother. 2020;128:110243. doi: 10.1016/j.biopha.2020.110243. [PubMed] [CrossRef[]
73. Jiang Z., Chen X., Chen K., Sun L., Gao L., Zhou C., Lei M., Duan W., Wang Z., Ma Q., et al. YAP Inhibition by resveratrol via activation of ampk enhances the sensitivity of pancreatic cancer cells to gemcitabine. Nutrients. 2016;8:546. doi: 10.3390/nu8100546. [PMC free article] [PubMed] [CrossRef[]
74. Yu J., Chen Q. Antitumor activities of rauwolfia vomitoria extract and potentiation of gemcitabine effects against pancreatic cancer. Integr. Cancer Ther. 2014;13:217–225. doi: 10.1177/1534735414532010. [PubMed] [CrossRef[]
75. Mu G.G., Zhang L.L., Li H.Y., Liao Y., Yu H.G. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of notch1; pi3k/akt/mtor regulated signaling pathways in pancreatic cancer. Dig. Dis. Sci. 2015;60:1067–1080. doi: 10.1007/s10620-014-3394-x. [PubMed] [CrossRef[]
76. Yang S.W., Wang W., Xie X.Y., Zhu W.P., Li F.Q. In vitro synergistic cytotoxic effect of triptolide combined with hydroxycamptothecin on pancreatic cancer cells. Am. J. Chin. Med. 2011;39:121–134. doi: 10.1142/S0192415X11008695. [PubMed] [CrossRef[]
77. Guo Q., Wang N., Liu H., Li Z., Lu L., Wang C. The bioactive compounds and biological functions of Asparagus officinalis L.—A review. J. Funct. Foods. 2020;65:103727. doi: 10.1016/j.jff.2019.103727. [CrossRef[]
78. Sidor A., Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24:3710. doi: 10.3390/molecules24203710. [PMC free article] [PubMed] [CrossRef[]
79. Woo J.H., Dapeng L., Dapeng L., Orita H., Coulter J., Tully E., Kwon T.K., Xu S., Gabrielson E. Coix seed extract, a commonly used treatment for cancer in China, inhibits NfkappaB and protein kinase C signaling. Cancer Biol. Ther. 2007;6:2005–2011. doi: 10.4161/cbt.6.12.5168. [PubMed] [CrossRef[]
80. Geisler R., Dargel C., Hellweg T. The Biosurfactant β-Aescin: A Review on the Physico-Chemical Properties and Its Interaction with Lipid Model Membranes and Langmuir Monolayers. Molecules. 2020;25:117. doi: 10.3390/molecules25010117. [PMC free article] [PubMed] [CrossRef[]
81. Kashyap D., Garg V.K., Tuli H.S., Yerer M.B., Sak K., Sharma A.K., Kumar M., Aggarwal V., Sandhu S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules. 2019;9:174. doi: 10.3390/biom9050174. [PMC free article] [PubMed] [CrossRef[]
82. Ashokkumar K. Gloriosa superba (L.): A brief review of its phytochemical properties and pharmacology. Int. J. Pharmacogn. Phytochem. Res. 2015;7:1190–1193. []
83. Hussain S.S., Patel D., Ghosh R., Kumar A.P. Extracting the Benefit of Nexrutine® for Cancer Prevention. Curr. Pharmacol. Rep. 2015;1:365–372. doi: 10.1007/s40495-015-0029-7. [PMC free article] [PubMed] [CrossRef[]
84. Hernandez-Unzueta I., Benedicto A., Olaso E., Sanz E., Viera C., Arteta B., Márquez J. Ocoxin oral solution as a complement to irinotecan chemotherapy in the metastatic progression of colorectal cancer to the liver. Oncol. Lett. 2017;13:4002–4012. doi: 10.3892/ol.2017.6016. [PMC free article] [PubMed] [CrossRef[]
85. Huang W.H., Zhang Q.W., Yuan C.S., Wang C.Z., Li S.P., Zhou H.H. Chemical constituents of the plants from the genus Oplopanax. Chem. Biodivers. 2014;11:181–196. doi: 10.1002/cbdv.201200306. [PubMed] [CrossRef[]
86. Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018;6:91. doi: 10.3390/biomedicines6030091. [PMC free article] [PubMed] [CrossRef[]
87. Mensah J.K., Okoli R.I., Turay A.A., Ogie-Odia E.A. Phytochemical analysis of medicinal plants used for the management of hypertension by Esan people of Edo State, Nigeria. Ethnobot. Leafl. 2009;13:1273–1287. []
88. Ahmad A., Mishra R.K., Vyawahare A., Kumar A., Rehman M.U., Qamar W., Khan A.Q., Khan R. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as achemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J. 2019;27:1113–1126. doi: 10.1016/j.jsps.2019.09.008. [PMC free article] [PubMed] [CrossRef[]
89. Subbarayan P.R., Sarkar M., Impellizzeri S., Raymo F., Lokeshwar B.L., Kumar P., Agarwal R.P., Ardalan B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol. 2010;131:78–82. doi: 10.1016/j.jep.2010.06.002. [PubMed] [CrossRef[]
90. Dong G.Z., Jeong J.H., Lee Y.I., Lee S.Y., Zhao H.Y., Jeon R., Lee H.J., Ryu J.H. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch. Pharm. Res. 2017;40:509–517. doi: 10.1007/s12272-017-0905-2. [PubMed] [CrossRef[]
91. Rabi T., Catapano C.V. Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells. Tumour Biol. 2016;37:12455–12464. doi: 10.1007/s13277-016-5102-2. [PubMed] [CrossRef[]
92. Li J., Seupel R., Bruhn T., Feineis D., Kaiser M., Brun R., Mudogo V., Awale S., Bringmann G. Jozilebomines A and B, naphthylisoquinoline dimers from the Congolese liana Ancistrocladus ileboensis, with antiausterity activities against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2017;80:2807–2817. doi: 10.1021/acs.jnatprod.7b00650. [PubMed] [CrossRef[]
93. Johnson J.L., de Mejia E.G. Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Mol. Nutr. Food Res. 2013;57:2112–2127. doi: 10.1002/mnfr.201300307. [PubMed] [CrossRef[]
94. Ashrafizadeh M., Bakhoda M.R., Bahmanpour Z., Ilkhani K., Zarrabi A., Makvandi P., Khan H., Mazaheri S., Darvish M., Mirzaei H. Apigenin as tumor suppressor in cancers: Biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front. Chem. 2020;8:829. doi: 10.3389/fchem.2020.00829. [PMC free article] [PubMed] [CrossRef[]
95. Mouhid L., de Cedrón M.G., Vargas T., García-Carrascosa E., Herranz N., García-Risco M., Reglero G., Fornari T., de Molina A.R. Identification of antitumoral agents against human pancreatic cancer cells from Asteraceae and Lamiaceae plant extracts. BMC Complement. Altern. Med. 2018;18:254. doi: 10.1186/s12906-018-2322-6. [PMC free article] [PubMed] [CrossRef[]
96. Kaur M., Deep G., Jain A.K., Raina K., Agarwal C., Wempe M.F., Agarwal R. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis. 2013;34:1585–1592. doi: 10.1093/carcin/bgt081. [PMC free article] [PubMed] [CrossRef[]
97. Huynh D.L., Koh H., Chandimali N., Zhang J.J., Kim N., Kang T.Y., Ghosh M., Gera M., Park Y.H., Kwon T., et al. BRM270 inhibits the proliferation of cd44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic hedgehog signaling. Evid.-Based Complement. Altern. Med. 2019;2019:8620469. doi: 10.1155/2019/8620469. [PMC free article] [PubMed] [CrossRef[]
98. Chandimali N., Koh H., Kim J., Lee J., Park Y.H., Sun H.N., Kwon T. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol. Lett. 2020;20:103. doi: 10.3892/ol.2020.11964. [PMC free article] [PubMed] [CrossRef[]
99. Nguyen N.T., Nguyen M.T.T., Nguyen H.X., Dang P.H., Dibwe D.F., Esumi H., Awale S. Constituents of the rhizomes of Boesenbergia pandurata and their antiausterity activities against the panc-1 human pancreatic cancer line. J. Nat. Prod. 2017;80:141–148. doi: 10.1021/acs.jnatprod.6b00784. [PubMed] [CrossRef[]
100. Ni X., Suhail M.M., Yang Q., Cao A., Fung K.M., Postier R.G., Woolley C., Young G., Zhang J., Lin H.K. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. BMC Complement. Altern. Med. 2012;12:253. doi: 10.1186/1472-6882-12-253. [PMC free article] [PubMed] [CrossRef[]
101. Liu L., Lin Z.X., Leung P.S., Chen L.H., Zhao M., Liang J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int. J. Mol. Med. 2012;30:93–99. doi: 10.3892/ijmm.2012.980. [PubMed] [CrossRef[]
102. Yang H., Tong Z., Shen L., Sun Y.U., Hoffman R.M., Huang J. Brucea javanica increases survival and enhances gemcitabine efficacy in a patient-derived orthotopic xenograft (pdox) mouse model of pancreatic cancer. Anticancer Res. 2020;40:4969–4978. doi: 10.21873/anticanres.14500. [PubMed] [CrossRef[]
103. Sharafi G., He H., Nikfarjam M. Potential use of cannabinoids for the treatment of pancreatic cancer. J. Pancreat. Cancer. 2019;5:1–7. doi: 10.1089/pancan.2018.0019. [PMC free article] [PubMed] [CrossRef[]
104. Lee J., Lee J., Kim M., Kim J.H. Fermented extraction of citrus unshiu peel inhibits viability and migration of human pancreatic cancers. J. Med. Food. 2018;21:5–12. doi: 10.1089/jmf.2017.3984. [PubMed] [CrossRef[]
105. Li C., Xu H., Chen X., Chen J., Li X., Qiao G., Tian Y., Yuan R., Su S., Liu X., et al. Aqueous extract of clove inhibits tumor growth by inducing autophagy through AMPK/ULK pathway. Phytother. Res. 2019;33:1794–1804. doi: 10.1002/ptr.6367. [PubMed] [CrossRef[]
106. Siddique H.R., Liao D.J., Mishra S.K., Schuster T., Wang L., Matter B., Campbell P.M., Villalta P., Nanda S., Deng Y., et al. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int. J. Cancer. 2012;131:1720–1731. doi: 10.1002/ijc.27409. [PubMed] [CrossRef[]
107. Li X.Y., Tao H., Jin C., Du Z.Y., Liao W.F., Tang Q.J., Ding K. Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling. Chin. J. Nat. Med. 2020;18:345–355. doi: 10.1016/S1875-5364(20)30041-8. [PubMed] [CrossRef[]
108. Bakshi H., Sam S., Rozati R., Sultan P., Islam T., Rathore B., Lone Z., Sharma M., Triphati J., Saxena R.C. DNA fragmentation and cell cycle arrest: A hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac. J. Cancer Prev. 2010;11:675–679. [PubMed[]
109. Lin T., Hsieh C. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin. Med. 2010;5:22. doi: 10.1186/1749-8546-5-22. [PMC free article] [PubMed] [CrossRef[]
110. Ge Y., Yang B., Chen Z., Cheng R. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway. Mol. Med. Rep. 2015;12:7782–7788. doi: 10.3892/mmr.2015.4379. [PubMed] [CrossRef[]
111. Sun C., Zhang M., Shan X., Zhou X., Yang J., Wang Y., Li-Ling J., Deng Y. Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J. Cancer Res. Clin. Oncol. 2010;136:603–610. doi: 10.1007/s00432-009-0698-x. [PubMed] [CrossRef[]
112. Xie J., Wang C., Yang A., Zhang B., Yin Q., Huang H., Chen M. Cucurmosin kills human pancreatic cancer SW-1990 cells in vitro and in vivo. Anticancer Agents Med. Chem. 2013;13:952–956. doi: 10.2174/18715206113139990109. [PubMed] [CrossRef[]
113. Ovadje P., Chochkeh M., Akbari-Asl P., Hamm C., Pandey S. Selective induction of apoptosis and autophagy through treatment with dandelion root extract in human pancreatic cancer cells. Pancreas. 2012;41:1039–1047. doi: 10.1097/MPA.0b013e31824b22a2. [PubMed] [CrossRef[]
114. Tuan Anh H.L., Tran P.T., Thao D.T., Trang D.T., Dang N.H., Van Cuong P., Kiem P.V., Minh C.V., Lee J.H. Degalactotigonin, a steroidal glycoside from Solanum nigrum, induces apoptosis and cell cycle arrest via inhibiting the egfr signaling pathways in pancreatic cancer cells. Biomed. Res. Int. 2018;2018:3120972. doi: 10.1155/2018/3120972. [PMC free article] [PubMed] [CrossRef[]
115. Tambe Y., Terado T., Kim C.J., Mukaisho K.I., Yoshida S., Sugihara H., Tanaka H., Chida J., Kido H., Yamaji K., et al. Antitumor activity of potent pyruvate dehydrogenase kinase 4 inhibitors from plants in pancreatic cancer. Mol. Carcinog. 2019;58:1726–1737. doi: 10.1002/mc.23045. [PubMed] [CrossRef[]
116. Long J., Liu Z., Hui L. Anti-tumor Effect and Mechanistic Study of Elemene on Pancreatic Carcinoma. BMC Complement. Altern. Med. 2019;19:133. doi: 10.1186/s12906-019-2544-2. [PMC free article] [PubMed] [CrossRef[]
117. Zhao M., Tang S.N., Marsh J.L., Shankar S., Srivastava R.K. Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Lett. 2013;337:210–217. doi: 10.1016/j.canlet.2013.05.009. [PubMed] [CrossRef[]
118. Cheng H., Lu C., Tang R., Pan Y., Bao S., Qiu Y., Xie M. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo. Oncotarget. 2017;8:12301–12310. doi: 10.18632/oncotarget.14811. [PMC free article] [PubMed] [CrossRef[]
119. Liu A., Chen H., Wei W., Ye S., Liao W., Gong J., Jiang Z., Wang L., Lin S. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep. 2011;26:81–89. doi: 10.3892/or.2011.1257. [PubMed] [CrossRef[]
120. Wang P., Su Z., Yuan W., Deng G., Li S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae) Pharm. Crops. 2012;3:99–120. doi: 10.2174/2210290601203010099. [CrossRef[]
121. Roshanravan N., Asgharian P., Dariushnejad H., Alamdari N.M., Mansoori B., Mohammadi A., Alipour S., Barati M., Ghavami A., Ghorbanzadeh V., et al. Eryngium billardieri induces apoptosis via Bax gene expression in pancreatic cancer cells. Adv. Pharm. Bull. 2018;8:667–674. doi: 10.15171/apb.2018.075. [PMC free article] [PubMed] [CrossRef[]
122. Vuong Q.V., Chalmers A.C., Jyoti Bhuyan D., Bowyer M.C., Scarlett C.J. Botanical, phytochemical, and anticancer properties of the eucalyptus species. Chem. Biodivers. 2015;12:907–924. doi: 10.1002/cbdv.201400327. [PubMed] [CrossRef[]
123. Bhuyan D.J., Sakoff J., Bond D.R., Predebon M., Vuong Q.V., Chalmers A.C., van Altena I.A., Bowyer M.C., Scarlett C.J. In vitro anticancer properties of selected Eucalyptus species. In Vitro Cell. Dev. Biol. Anim. 2017;53:604–615. doi: 10.1007/s11626-017-0149-y. [PubMed] [CrossRef[]
124. Bhuyan D.J., Vuong Q.V., Bond D.R., Chalmers A.C., van Altena I.A., Bowyer M.C., Scarlett C.J. Exploring the least studied Australian eucalypt genera: Corymbia and angophora for phytochemicals with anticancer activity against pancreatic malignancies. Chem. Biodivers. 2017;14:e1600291. doi: 10.1002/cbdv.201600291. [PubMed] [CrossRef[]
125. Alilou M., Dibwe D.F., Schwaiger S., Khodami M., Troppmair J., Awale S., Stuppner H. Antiausterity activity of secondary metabolites from the roots of ferula hezarlalehzarica against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2020;83:1099–1106. doi: 10.1021/acs.jnatprod.9b01109. [PMC free article] [PubMed] [CrossRef[]
126. Cedó L., Castell-Auví A., Pallares V., Macia A., Blay M., Ardévol A., Motilva M.J., Pinent M. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells. Nutr. Cancer. 2014;66:88–96. doi: 10.1080/01635581.2014.851714. [PubMed] [CrossRef[]
127. Wang W., Cheng J., Zhu Y. The JNK signaling pathway is a novel molecular target for s-propargyl-L-cysteine, a naturally-occurring garlic derivatives: Link to its anticancer activity in pancreatic cancer in vitro and in vivo. Curr. Cancer Drug Targets. 2015;15:613–623. doi: 10.2174/1568009615666150602143943. [PubMed] [CrossRef[]
128. Lan X., Sun H., Liu J., Lin Y., Zhu Z., Han X., Sun X., Li X., Zhang H., Tang Z. Effects of garlic oil on pancreatic cancer cells. Asian Pac. J. Cancer Prev. 2013;14:5905–5910. doi: 10.7314/APJCP.2013.14.10.5905. [PubMed] [CrossRef[]
129. Subramani R., Gonzalez E., Nandy S.B., Arumugam A., Camacho F., Medel J., Alabi D., Lakshmanaswamy R. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget. 2017;8:10891–10904. doi: 10.18632/oncotarget.8055. [PMC free article] [PubMed] [CrossRef[]
130. Akimoto M., Iizuka M., Kanematsu R., Yoshida M., Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS ONE. 2015;10:e0126605. doi: 10.1371/journal.pone.0126605. [PMC free article] [PubMed] [CrossRef[]
131. Ma J., Duan W., Han S., Lei J., Xu Q., Chen X., Jiang Z., Nan L., Li J., Chen K., et al. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget. 2015;6:20993–21003. doi: 10.18632/oncotarget.3663. [PMC free article] [PubMed] [CrossRef[]
132. Prasad R., Vaid M., Katiyar S.K. Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS ONE. 2012;7:e43064. doi: 10.1371/journal.pone.0043064. [PMC free article] [PubMed] [CrossRef[]
133. Torres M.P., Rachagani S., Purohit V., Pandey P., Joshi S., Moore E.D., Johansson S.L., Singh P.K., Ganti A.K., Batra S.K. Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett. 2012;323:29–40. doi: 10.1016/j.canlet.2012.03.031. [PMC free article] [PubMed] [CrossRef[]
134. Zhang L., Pang E., Loo R.R.O., Rao J., Go V.L.W., Loo J.A., Lu Q.Y. Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics. 2011;11:4638–4647. doi: 10.1002/pmic.201100242. [PMC free article] [PubMed] [CrossRef[]
135. Pham H.N.T., Sakoff J.A., Bond D.R., Vuong Q.V., Bowyer M.C., Scarlett C.J. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. Leaf and stem extracts and their fractions. Mol. Biol. Rep. 2018;45:2125–2133. doi: 10.1007/s11033-018-4370-x. [PubMed] [CrossRef[]
136. Zhang B., Zeng J., Yan Y., Yang B., Huang M., Wang L., Zhang Q., Lin N. Ethyl acetate extract from Inula helenium L. inhibits the proliferation of pancreatic cancer cells by regulating the stat3/akt pathway. Mol. Med. Rep. 2018;17:5440–5448. doi: 10.3892/mmr.2018.8534. [PubMed] [CrossRef[]
137. Lin L., Wang P., Du Z., Wang W., Cong Q., Zheng C., Jin C., Ding K., Shao C. Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity. Int. J. Biol. Macromol. 2016;88:130–137. doi: 10.1016/j.ijbiomac.2016.03.025. [PubMed] [CrossRef[]
138. Liu Y., Bi T., Wang G., Dai W., Wu G., Qian L., Gao Q., Shen G. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2015;388:295–304. doi: 10.1007/s00210-014-1071-4. [PubMed] [CrossRef[]
139. Nguyen H.X., Do T.N.V., Le T.H., Nguyen M.T.T., Nguyen N.T., Esumi H., Awale S. Chemical constituents of Mangifera indica and their antiausterity activity against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2016;79:2053–2059. doi: 10.1021/acs.jnatprod.6b00381. [PubMed] [CrossRef[]
140. Patil J.R., Chidambara Murthy K.N., Jayaprakasha G.K., Chetti M.B., Patil B.S. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J. Agric. Food Chem. 2009;57:10933–10942. doi: 10.1021/jf901718u. [PubMed] [CrossRef[]
141. Berkovich L., Earon G., Ron I., Rimmon A., Vexler A., Lev-Ari S. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 2013;13:212. doi: 10.1186/1472-6882-13-212. [PMC free article] [PubMed] [CrossRef[]
142. Zhang Y., Zhang H., Yu P., Liu Q., Liu K., Duan H., Luan G., Yagasaki K., Zhang G. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology. 2009;59:191–200. doi: 10.1007/s10616-009-9211-2. [PMC free article] [PubMed] [CrossRef[]
143. Lee J., Kim D.H., Kim J.H. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine. 2019;58:152762. doi: 10.1016/j.phymed.2018.11.022. [PubMed] [CrossRef[]
144. Pan Y., Rhea P., Tan L., Cartwright C., Lee H.J., Ravoori M.K., Addington C., Gagea M., Kundra V., Kim S.J., et al. PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway. Investig. New Drugs. 2015;33:271–279. doi: 10.1007/s10637-014-0190-6. [PMC free article] [PubMed] [CrossRef[]
145. Subramani R., Gonzalez E., Arumugam A., Nandy S., Gonzalez V., Medel J., Camacho F., Ortega A. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci. Rep. 2016;6:19819. doi: 10.1038/srep19819. [PMC free article] [PubMed] [CrossRef[]
146. Chidambara Murthy K.N., Jayaprakasha G.K., Patil B.S. Apoptosis mediated cytotoxicity of citrus obacunone in human pancreatic cancer cells. Toxicol. In Vitro. 2011;25:859–867. doi: 10.1016/j.tiv.2011.02.006. [PubMed] [CrossRef[]
147. Shimizu T., Torres M.P., Chakraborty S., Souchek J.J., Rachagani S., Kaur S., Macha M., Ganti A.K., Hauke R.J., Batra S.K. Holy Basil leaf extracts decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: Potential role in therapy. Cancer Lett. 2013;336:270–280. doi: 10.1016/j.canlet.2013.03.017. [PMC free article] [PubMed] [CrossRef[]
148. Goldsmith C.D., Vuong Q.V., Sadeqzadeh E., Stathopoulos C.E., Roach P.D., Scarlett C.J. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells. Molecules. 2015;20:12992–13004. doi: 10.3390/molecules200712992. [PMC free article] [PubMed] [CrossRef[]
149. Goldsmith C.D., Bond D.R., Jankowski H., Weidenhofer J., Stathopoulos C.E., Roach P.D., Scarlett C.J. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018;19:1937. doi: 10.3390/ijms19071937. [PMC free article] [PubMed] [CrossRef[]
150. Bu H.Q., Liu D.L., Wei W.T., Chen L., Huang H., Li Y., Cui J.H. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via, p.5.3.-and caspase-dependent induction of p38 MAPK. Oncol. Rep. 2014;31:975–982. doi: 10.3892/or.2013.2888. [PubMed] [CrossRef[]
151. Gui Z., Li S., Liu X., Xu B., Xu J. Oridonin alters the expression profiles of microRNAs in BxPC-3 human pancreatic cancer cells. BMC Complement. Altern. Med. 2015;15:117. doi: 10.1186/s12906-015-0640-5. [PMC free article] [PubMed] [CrossRef[]
152. Li Y., Gong L., Qi R., Sun Q., Xia X., He H., Ren J., Zhu O., Zhuo D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des. Dev. Ther. 2017;11:2481–2491. doi: 10.2147/DDDT.S134518. [PMC free article] [PubMed] [CrossRef[]
153. Ji X., Usman A., Razalli N.H., Sambanthamurthi R., Gupta S.V. Oil palm phenolics (OPP) inhibit pancreatic cancer cell proliferation via suppression of NF-κB pathway. Anticancer Res. 2015;35:97–106. [PubMed[]
154. Nguyen V.T., Sakoff J.A., Scarlett C.J. Physicochemical, antioxidant, and cytotoxic properties of Xao Tam Phan (Paramignya trimera) root extract and its fractions. Chem. Biodivers. 2017;14:e1600396. doi: 10.1002/cbdv.201600396. [PubMed] [CrossRef[]
155. Patel J.R., Tripathi P., Sharma V., Chauhan N.S., Dixit V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011;138:286–313. doi: 10.1016/j.jep.2011.09.040. [PubMed] [CrossRef[]
156. Nguyen V.T., Scarlett C.J. Cytotoxic activity of extracts and fractions from Paramignya trimera root and Phyllanthus amarus against pancreatic cancer cell lines. J. Cancer Res. Ther. 2019;15:245–249. doi: 10.4103/jcrt.JCRT_85_18. [PubMed] [CrossRef[]
157. Chen C.A., Chang H.H., Kao C.Y., Tsai T.H., Chen Y.J. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology. 2009;9:797–809. doi: 10.1159/000210028. [PubMed] [CrossRef[]
158. Nair V., Dai Z., Khan M., Ciolino H.P. Pomegranate extract induces cell cycle arrest and alters cellular phenotype of human pancreatic cancer cells. Anticancer Res. 2011;31:2699–2704. [PubMed[]
159. Son M.K., Jung K.H., Lee H.S., Lee H., Kim S.J., Yan H.H., Ryu Y.L., Hong S.S. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells. Oncol. Rep. 2013;30:801–808. doi: 10.3892/or.2013.2517. [PubMed] [CrossRef[]
160. Asgharian P., Tazehkand A.P., Soofiyani S.R., Hosseini K., Martorell M., Tarhriz V., Ahangari H., Cruz-Martins N., Sharifi-Rad J., Almarhoon Z.M., et al. Quercetin impact in pancreatic cancer: An overview on its therapeutic effects. Oxid. Med. Cell. Longev. 2021;2021:4393266. doi: 10.1155/2021/4393266. [PMC free article] [PubMed] [CrossRef[]
161. Borska S., Drag-Zalesinska M., Wysocka T., Sopel M., Dumanska M., Zabel M., Dziegiel P. Antiproliferative and pro-apoptotic effects of quercetin on human pancreatic carcinoma cell lines EPP85-181P and EPP85-181RDB. Folia Histochem. Cytobiol. 2010;48:222–229. doi: 10.2478/v10042-08-0109-1. [PubMed] [CrossRef[]
162. Li C., Lin G., Zuo Z. Pharmacological effects and pharmacokinetics properties of radix scutellariae and its bioactive flavones. Biopharm. Drug Dispos. 2011;32:427–445. doi: 10.1002/bdd.771. [PubMed] [CrossRef[]
163. Liu J., Wang H., Wang J., Chang Q., Hu Z., Shen X., Feng J., Zhang Z., Wu X. Total flavonoid aglycones extract in Radix Scutellariae induces cross-regulation between autophagy and apoptosis in pancreatic cancer cells. J. Ethnopharmacol. 2019;235:133–140. doi: 10.1016/j.jep.2019.02.005. [PubMed] [CrossRef[]
164. Venkanna A., Siva B., Poornima B., Vadaparthi P.R., Prasad K.R., Reddy K.A., Reddy G.B.P., Babu K.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Fitoterapia. 2014;95:102–108. doi: 10.1016/j.fitote.2014.03.003. [PubMed] [CrossRef[]
165. Zhao Q., Huo X.C., Sun F.D., Dong R.Q. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells. Mol. Med. Rep. 2015;12:4843–4850. doi: 10.3892/mmr.2015.4074. [PMC free article] [PubMed] [CrossRef[] Retracted
166. Bai Y., Chen B., Hong W., Liang Y., Zhou M., Zhou L. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway. Oncol. Rep. 2016;35:2775–2784. doi: 10.3892/or.2016.4679. [PubMed] [CrossRef[]
167. Hao C., Zhang X., Zhang H., Shang H., Bao J., Wang H., Li Z. Sugiol (12-hydroxyabieta-8,11,13-trien-7-one) targets human pancreatic carcinoma cells (Mia-PaCa2) by inducing apoptosis, G2/M cell cycle arrest, ROS production and inhibition of cancer cell migration. J. BUON. 2018;23:205–210. [PubMed[]
168. Yang C., Li Y., Hu W., Wang X., Hu J., Yuan C., Zhou C., Wang H., Du J., Wang Y., et al. TEOA promotes autophagic cell death via ros-mediated inhibition of mtor/p70s6k signaling pathway in pancreatic cancer cells. Front. Cell Dev. Biol. 2021;9:734818. doi: 10.3389/fcell.2021.734818. [PMC free article] [PubMed] [CrossRef[]
169. Shi Y.L., Li M.F. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog. Neurobiol. 2007;82:1–10. doi: 10.1016/j.pneurobio.2007.02.002. [PubMed] [CrossRef[]
170. Pei Z., Fu W., Wang G. A natural product toosendanin inhibits epithelial-mesenchymal transition and tumor growth in pancreatic cancer via deactivating Akt/mTOR signaling. Biochem. Biophys. Res. Commun. 2017;493:455–460. doi: 10.1016/j.bbrc.2017.08.170. [PubMed] [CrossRef[]
171. Li Y., Wang J., Xiao Y., Wang Y., Chen S., Yang Y., Lu A., Zhang S. A systems pharmacology approach to investigate the mechanisms of action of Semen Strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J. Ethnopharmacol. 2015;175:301–314. doi: 10.1016/j.jep.2015.09.016. [PubMed] [CrossRef[]
172. Chen L., Feng D., Qian Y., Cheng X., Song H., Qian Y., Zhang X., Wu Y., Lv H., Liu Q., et al. Valtrate as a novel therapeutic agent exhibits potent anti-pancreatic cancer activity by inhibiting Stat3 signaling. Phytomedicine. 2021;85:153537. doi: 10.1016/j.phymed.2021.153537. [PubMed] [CrossRef[]
173. Jiang W., Zhao S., Xu L., Lu Y., Lu Z., Chen C., Ni J., Wan R., Yang L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed. Pharmacother. 2015;73:40–47. doi: 10.1016/j.biopha.2015.05.020. [PubMed] [CrossRef[]
174. Nguyen V.T., Sakoff J.A., Scarlett C.J. Physicochemical properties, antioxidant and anti-proliferative capacities of dried leaf and its extract from xao tam phan (Paramignya trimeraChem Biodivers. 2017;14:e1600498. doi: 10.1002/cbdv.201600498. [PubMed] [CrossRef[]
175. Arora D., Sharma N., Singamaneni V., Sharma V., Kushwaha M., Abrol V., Guru S., Sharma S., Gupta A.P., Bhushan S., et al. Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine. 2016;23:1312–1320. doi: 10.1016/j.phymed.2016.07.004. [PubMed] [CrossRef[]
176. Chang H., Wang Y., Gao X., Song Z., Awale S., Han N., Liu Z., Yin J. Lignans from the root of Wikstroemia indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells. Fitoterapia. 2017;121:31–37. doi: 10.1016/j.fitote.2017.06.012. [PubMed] [CrossRef[]
177. Mesmar J., Fardoun M.M., Abdallah R., Al Dhaheri Y., Yassine H.M., Iratni R., Badran A., Eid A.H., Baydoun E. Ziziphus nummularia attenuates the malignant phenotype of human pancreatic cancer cells: Role of ros. Molecules. 2021;26:4295. doi: 10.3390/molecules26144295. [PMC free article] [PubMed] [CrossRef[]
178. Praveen K.S. Achyranthes aspera: A potent immunostimulating plant for traditional medicine. IJPSR. 2014;5:1601–1611. []
179. Chowdhury R., Hasan C.M., Rashid M.A. Guaiane sesquiterpenes from Amoora rohitukaPhytochemistry. 2003;62:1213–1216. doi: 10.1016/S0031-9422(02)00698-2. [PubMed] [CrossRef[]
180. Kavatsurwa S.M., Lombe B.K., Feineis D., Dibwe D.F., Maharaj V., Awale S., Bringmann G. Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoterapia. 2018;130:6–16. doi: 10.1016/j.fitote.2018.07.017. [PubMed] [CrossRef[]
181. Zgen U.O., Mavi A., Terzi Z., Yildirim A., Cos M., Houghton P.J. Antioxidant Properties of Some Medicinal Lamiaceae (Labiatae) Species. Pharm. Biol. 2006;44:107–112. []
182. Kima M., Yang K.W., Kim S.S., Park M., Park K.J., Kim K.S., Choi Y.H., Cho K.K., Hyuna C.G. Chemical composition and anti-inflammation activity of essential oils from citrus unshiu flower. Nat. Prod. Commun. 2014;9:727–730. doi: 10.1177/1934578X1400900538. [PubMed] [CrossRef[]
183. Pham T.Q., Cormier F., Farnworth E., Tong V.H., Van Calsteren M.R. Antioxidant properties of crocin from Gardenia jasminoides ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J. Agric. Food Chem. 2000;48:1455–1461. doi: 10.1021/jf991263j. [PubMed] [CrossRef[]
184. Wirngo F.E., Lambert M.N., Jeppesen P.B. The physiological effects of Dandelion (Taraxacum officinale) in Type 2 Diabetes. Rev. Diabet. Stud. 2016;13:113–131. doi: 10.1900/RDS.2016.13.113. [PMC free article] [PubMed] [CrossRef[]
185. Coria-Téllez A.V., Montalvo-Gónzalez E., Yahia E.M., Obledo-Vázquez E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 2018;11:662–691. doi: 10.1016/j.arabjc.2016.01.004. [CrossRef[]
186. Nguyena T.T., Kretschmera N., Pferschy-Wenziga E.M., Kunertb O., Bauera R. Triterpenoidal and phenolic compounds isolated from the aerial parts of Helicteres hirsuta and their cytotoxicity on several cancer cell lines. Nat. Prod. Commun. 2019;14:7–10. doi: 10.1177/1934578X1901400103. [CrossRef[]
187. Shang X., Pan H., Li M., Miao X., Ding H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2011;138:1–21. doi: 10.1016/j.jep.2011.08.016. [PMC free article] [PubMed] [CrossRef[]
188. Maldonado-Celis M.E., Yahia E.M., Bedoya R., Landázuri P., Loango N., Aguillón J., Restrepo B., Guerrero Ospina J.C. Chemical composition of Mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front. Plant Sci. 2019;10:1073. doi: 10.3389/fpls.2019.01073. [PMC free article] [PubMed] [CrossRef[]
189. Al-Aamri M.S., Al-Abousi N.M., Al-Jabri S.S., Alam T., Khan S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J Taibah Univ. Med. Sci. 2018;13:108–112. doi: 10.1016/j.jtumed.2017.12.002. [PMC free article] [PubMed] [CrossRef[]
190. Liu T., Song Y., Chen H., Pan S., Sun X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull. 2010;33:1740–1745. doi: 10.1248/bpb.33.1740. [PubMed] [CrossRef[]
191. Kim K.N., Ko Y.J., Yang H.M., Ham Y.M., Roh S.W., Jeon Y.J., Ahn G., Kang M.C., Yoon W.J., Kim D., et al. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food Chem Toxicol. 2013;57:126–131. doi: 10.1016/j.fct.2013.03.017. [PubMed] [CrossRef[]
192. Pattanayak P., Behera P., Das D., Panda S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010;4:95–105. doi: 10.4103/0973-7847.65323. [PMC free article] [PubMed] [CrossRef[]
193. de Almeida E.S., da Silva Damaceno D., Carvalho L., Araújo Victor P., dos Passos R.M., de Almeida Pontes P.V., Cunha-Filho M., Sampaio K.A., Monteiro S. Thermal and physical properties of crude palm oil with higher oleic content. Appl. Sci. 2021;11:7094. doi: 10.3390/app11157094. [CrossRef[]
194. Vijayakumar R., Senthilvelan M., Ravindran R., Devi R.S. Plumbago zeylanica action on blood coagulation profile with and without blood volume reduction. Vasc. Pharmacol. 2006;45:86–90. doi: 10.1016/j.vph.2006.02.001. [PubMed] [CrossRef[]
195. Ismail F.A., Abdelatif S.H., Abd El-Mohsen N.R., Zaki S.A. The physico-chemical properties of pomegranate juice (Punica granatum L.) extracted from two Egyptian varieties. World J. Dairy Food Sci. 2014;9:29–35. []
196. Li W., Yan X.T., Sun Y.N., Ngan T.T., Shim S.H., Kim Y.H. Anti-Inflammatory and PPAR Transactivational Effects of Oleanane-Type Triterpenoid Saponins from the Roots of Pulsatilla koreanaBiomol. Ther. 2014;22:334–340. doi: 10.4062/biomolther.2014.047. [PMC free article] [PubMed] [CrossRef[]
197. Shaer N.A. Can crude alkaloids extract of Rhazya stricta induce apoptosis in pancreatic cancer: In vitro study? Pathophysiology. 2019;26:97–101. doi: 10.1016/j.pathophys.2018.09.001. [PubMed] [CrossRef[]
198. Lu H., Cheng S., Wu C., Zheng S., Hong W., Liu L., Bai Y. Sedum sarmentosum bunge extract alleviates inflammation and kidney injury via inhibition of M1-macrophage polarization. Phytomedicine. 2019;62:152976. doi: 10.1016/j.phymed.2019.152976. [PubMed] [CrossRef[]
199. Bai Y., Lu H., Hu L., Hong D., Ding L., Chen B. Effect of Sedum sarmentosum BUNGE extract on aristolochic acid-induced renal tubular epithelial cell injury. J. Pharmacol. Sci. 2014;124:445–456. doi: 10.1254/jphs.13216FP. [PubMed] [CrossRef[]
200. Shi S.N., Shi J.L., Liu Y., Wang Y.L., Wang C.G., Hou W.H., Guo J.Y. The anxiolytic effects of valtrate in rats involves changes of corticosterone levels. Evid.-Based Complement. Altern. Med. 2014;2014:325948. doi: 10.1155/2014/325948. [PMC free article] [PubMed] [CrossRef[]
201. Stompor M., Żarowska B. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues. Molecules. 2016;21:608. doi: 10.3390/molecules21050608. [PMC free article] [PubMed] [CrossRef[]
202. Kasapoğlu K.N., Altin G., Farooqi A.A., Salehi B., Özçelik B., Setzer W.N., Sharifi-Rad J. Anti-proliferative, genotoxic and cytotoxic effects of phytochemicals isolated from Anatolian medicinal plants. Cell Mol. Biol. 2020;66:145–159. doi: 10.14715/cmb/2020.66.4.19. [PubMed] [CrossRef[]
203. Lu C.L., Zhu L., Piao J.H., Jiang J.G. Chemical compositions extracted from Wikstroemia indica and their multiple activities. Pharm. Biol. 2012;50:225–231. doi: 10.3109/13880209.2011.596207. [PubMed] [CrossRef[]
204. Lambert A., Schwarz L., Borbath I., Henry A., Van Laethem J.L., Malka D., Ducreux M., Conroy T. An update on treatment options for pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2019;11:1758835919875568. doi: 10.1177/1758835919875568. [PMC free article] [PubMed] [CrossRef[]
205. Ducreux M., Seufferlein T., Van Laethem J.L., Laurent-Puig P., Smolenschi C., Malka D., Boige V., Hollebecque A., Conroy T. Systemic treatment of pancreatic cancer revisited. Semin. Oncol. 2019;46:28–38. doi: 10.1053/j.seminoncol.2018.12.003. [PubMed] [CrossRef[]
206. Sunami Y., Kleeff J. Immunotherapy of pancreatic cancer. Prog. Mol. Biol. Transl. Sci. 2019;164:189–216. doi: 10.1016/bs.pmbts.2019.03.006. [PubMed] [CrossRef[]
207. Lai E., Puzzoni M., Ziranu P., Pretta A., Impera V., Mariani S., Liscia N., Soro P., Musio F., Persano M., et al. New therapeutic targets in pancreatic cancer. Cancer Treat. Rev. 2019;81:101926. doi: 10.1016/j.ctrv.2019.101926. [PubMed] [CrossRef[]
208. Nevala-Plagemann C., Hidalgo M., Garrido-Laguna I. От современных методов лечения к новым методам лечения рака поджелудочной железы на поздней стадии. Nat. Rev. Clin. Oncol. 2020; 17 :108–123. doi: 10.1038/s41571-019-0281-6. [ PubMed ] [ CrossRef ]  ]
209. Zeng S., Pöttler M., Lan B., Grützmann R., Pilarsky C., Yang H. Chemoreresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019; 20 :4504. doi: 10.3390/ijms20184504. Бесплатная статья PMC ] [ PubMed ] [ CrossRef ]  ]
210. Posadzki P., Watson LK, Alotaibi A., Ernst E. Распространенность использования дополнительной и альтернативной медицины (CAM) пациентами/потребителями в Великобритании: систематический обзор опросов. Clin. Med. 2013; 13 :126–131. doi: 10.7861/clinmedicine.13-2-126. Бесплатная статья PMC ] [ PubMed ] [ CrossRef ]  ]
211. Mohammed A., Janakiram NB, Pant S., Rao CV Молекулярно-целевое вмешательство при раке поджелудочной железы. Cancers. 2015; 7 :1499–1542. doi: 10.3390/cancers7030850. Бесплатная статья PMC ] [ PubMed ] [ CrossRef ]  ]
212. Чжан Д., У Дж., Лю С., Чжан Х., Чжан Б. Сетевой метаанализ китайских травяных инъекций в сочетании с химиотерапией для лечения рака поджелудочной железы. Медицина. 2017; 96 :e7005. doi: 10.1097/MD.0000000000007005. Бесплатная статья PMC ] [ PubMed ] [ CrossRef ]  ]

Статьи из журнала Nutrients предоставлены здесь благодаря любезному предоставлению Multidisciplinary Digital Publishing Institute (MDPI)

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927967/ куркума усиливает химию
Оцените статью
Дмитро Гущін
ХИМИОПРОФИЛАКТИКА РАКА